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_Radiation Effects in Semiconductor Devices
B Natural space radiation (high-energy ionizing particles) may induce
electrical noise (single event effect) in many types of semiconductor
devices

M Data corruption, transient disturbance, and high-current conditions

B Each particle produces an ionization track (and electrical charge)

B Prompt component Cosmic ray track —f

B Funneling in high-field regions
B Delayed component

B Diffusion in low-field regions

B Non-destructive effects
B Single event upset (SEU)
B Single event transient (SET)

B Destructive effect in CMOS technology
B Single event latchup (SEL) Substrate

N
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Radiation Effects in Integrated Circuits

B SEU causes the change of state in storage element

B Memory cells and registers affected

M SET causes a high-voltage impulse on interconnection lines

B Combinational logic affected

B SEL causes an excessive current flow through the parasitic PNPN
structure in CMOS transistor pair

B Circuit design and technology dependent
Uss

n'MOSFET  p-MOSFET
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Solutions for Fault-Tolerant Circuits and Systems

B Single event effect (fault) tolerant application specific integrated circuits
B Device techniques
B Circuit techniques

B System techniques

B Circuit and design techniques are not as expensive as device techniques
® SEU and SET tolerance
B Triple modular redundancy (TMR)
B Double modular redundancy (DMR)
M SEL tolerance
B Current sensing and power switching
B SEU, SET, and SEL tolerance

B Modification of net-list, placement, and routing

\
S
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Enclosed Layout Transistors

source n+

drain n+

Enclosed layout transistors
and guard rings in a radiation =
tolerant CMOS inverter

Radiation tolerant MOS transistor
<= designed according to the enclosed
layout transistor topology
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Rad-Hard Standard Cells

ELT n-mos and p-mos transistor to increase
Total lonizing Dose (TID)

Enhanced guard-rings against Single-Event-
Latchup (SEL)
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Courtesy of Cristiano Calligaro
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Original and Rad-Hard Cells

EL -ri
TID (border) SEL (no guard-ring)

TID (border)

Courtesy of Cristiano Calligaro
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SRAM for Embedded Memories
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SRAM Cell Trade-off

BLn

Fringe capacitor (M3-M4-M5) to reduce SETs LI Ly

Courtesy of Cristiano Calligaro
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Fault-Tolerant Circuits

SEUE»r—— SET
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SEL Protection Switch (SPS)

B Current sensing and power switching

B Transistor P5 senses the supply current (the higher current, the lower output
voltage VDD _a)

B Feedback activates transistor P6 when VDD _a is under the threshold voltage
B Output TSTART of transistor NO triggers a timer
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V. Petrovic et al., Microelectronics Reliability, 2014.
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SPS Timing Diagram and Parameters

TRIGGER ‘{ \ POFT LRT PONT PDT MAT
vDD_a -‘l jr
TSTART Simulated 55.19 [ps] 76 [ps] 487 [ps] 786.5 [ps] 700 [ps]
TSTOP
Measured 120 [ps] 440 [ps] 1.42 [ns] 1.71 [ns] 2 [ns]
T | T oo
Vdd_a
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Supply Voltage and Channel Width Effects on SPS Response
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Integration of DMR and SPS

VDD_C1
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SPS Placement and Control

PNC sets the period of latchup protection mode

If the latchup occurs, TSTART activates the
corresponding control interface which has to
save the current counter value

I I Statis/Contol Uni T B When the protection phase is over, the control
interface activates the TSTOP signal

Control
Register
(n:1) Programmable Counter

etwor Power Row
=

Power Network Controller (PNC)

Controller
(PNC)

B Itis possible to detect
multiple latchup effects e

SPScell 3

WD 4000

B Control register
FF2_a

generates the Poff signal
and can be accessed by o === —

the system processor
A

von VDD VDS

,—_| S
— Power Stripes >

SP3cell2 SPS cell 4
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Self-voting DMR Circuit with Latchup Protection

flip-flop

CP CDN

SPS_a

pm——————
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To Power Domain Information
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From
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Flip-flop

Redundant
Flip-flop

Main Output

Input Data on

Primary Flip-flop
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DMR and TMR Shift Registers (including SPS)
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Design Flow Modifications

B Use of the standard design tools

HDL
B Flip-flops are replaced by TMR or DMR
storage elements (FF and voter) HDL Simulation
B Duplication of the original net-list S Synthesis
B Power domains ‘of the original and . Notiist Modiricar e
redundant net-lists are separated Synthesis Script )
B Memories include protection bits and Simulation Simulation
EDAC logic
Layout
. . . Layout
B SEL protection switches are placed in _
. Pl & Rout
layout phase under the power stripes e 1D
instead of filler cells
DRC & LVS Simulation
B SPS power network is connected in
power routing phase to the main power DRC & LVS

network
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Fundamentals of SETs: Parameters and Modeling

M [rradiation parameters B SET modeling

u . .
Particle energy M SET current pulse generation

= Direction/location of particle strike Current pulse source in the target gate of the circuit

B Technological parameters m SET voltage pulse generation
B Channel length Current-induced voltage pulse at the gate output
B Doping profiles W SET voltage pulse propagation
H Design parameters If not electrically or logically masked, induced voltage

pulse propagates through the combinational logic

- . : .
Transistor size m SET voltage pulse latching

" Load capacitance Voltage pulse arrives at the input of a sequential

. element within the latching window
H Operatmg parameters
W Critical charge
m Supply voltage
Minimum charge (induced by irradiation) needed to
B Temperature cause a SET

www.ihp-microelectronics.com | © 2020 - All rights reserved | 21



Classification of SET Current Models

B Macro-modeling B Voltage-independent current models

B Current source is implemented as a -

Rectangular current pulse model
stand-alone module

tagetgate  fload gate ® Double-exponential current pulse model

-—[>o——[>o—- B Freeman’s current model

V4
G) SET current B Hu's current model

source

m Diffusion current model

. . [ !
B Micro-modeling Roche’s current model

® Current source is implemented within B Dual voltage-independent current
the target transistor models

B Transistor model is a necessity
Voltage-dependent current models

Piecewise interpolation models

SET
current
source Re

Look-up table models

GATE BULK

RS
SOURCE

Switch-based models
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Voltage-Independent Current Models

IAMP T1 <t< Ty
I t) = ' Rectangular current pulse source
SET( ) {0, T1 >t > )

Double-exponential current pulse source
0
COLL [ _ _ =
Ispr(t) = ——— (e —e7t/r) 3
r LA
. _ kege,
F ™~ quNp
T
f
T, = —
T4

1.85 T, Time
B Very simple for implementation in SPICE

B Neglect the dependence of the SET current on the node voltage
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A Use Case: SEL Protection Switch

B SET pulses with an amplitude larger than Vdd/2 will result in triggering false
SEL alarms

B SET pulses with an amplitude larger than 10 % of Vdd may result in
malfunction of standard cells

B Rectangular and double-exponential current pulse sources have been used
as a SET simulation model

TSTART
SPS cell —
——— Vdd vdd vdd_a
[ TSTOP TSTART
P_OFF Vdd_a
Gnd

Vout
VeuLse Load>0—-

@
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SET Analysis with Rectangular Model (Current and Vdd)

M SET-induced voltage pulse at the output of SEL protection switch was analyzed
using a rectangular current model

B Amplitude and width of SET voltage pulse increased with the increase of the
amplitude of rectangular current pulse

B Amplitude and width of the SET voltage pulse decreased as the supply voltage
was increased

2.6 0.12 3.0
)"';j:* i e
° 2.2 / ' »n -~ / Vi 7
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£ ~ s 2 9 ° / iy
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p il T n
2 F0.06 5 o '\ i
E . / —B— SET pulse amplitude -—0.05 § > 00 }{Q&\ M/
» " —@— SET pulse width i = /
_'0'04 0.5 j Vdd =2.25V
1.2 0.03 -1.0 1 |
1.00 1.25 1.50 1.75 2.00 2.25 2.00E-009 2.10E-009 2.20E-009
Injected current (mA) Simulation time (s)
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SET Analysis with Rectangular Model (Load and PMOS Width) 4=

M Increasing the number of load inverters connected to the output of SPS cell
resulted in the decrease of both amplitude and width of the SET voltage pulse

B Amplitude and width of the SET voltage pulse decreased as the width of PMOS
sensor/driver transistor was increased

B For a transistor width of 7.5 um, the SPS cell was robust (SET voltage pulse was below Vdd/2) to
SET-induced charge up to 180 fC

3.0 3.0 I
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g \ o 1/
8 15 o 1.5
< \ / g l/
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0.0 / 0.0 .
‘ 1 inverter
-0.5 -0.5
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Simulation time (s) Simulation time (s)
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Manufacturing Defects

Resistive bridge defect

Resistive open defect
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SET Response in Presence of Resistive Faults

B Goal: to evaluate SET response .
due to intra-gate faults Ro_pmos

M 2-input NAND gate was used as a |_|\£°|-_—':| M’| Rb_pmos

target circuit j _ .

B Analyzed faults: IN1 :J_ *Rb_nmos
I—l
> Resistive open faults Ro_pmos N2 |~ lser(t)
and Ro_nmos L
Ro_nmos -
> Resistive bridge faults Rb_pmos T

and Rb_nmos

Fault type Resistance range (kQ)

B Resistance range — range of

) ) Ro_pmos 0.5-50
defect resistance for which the =
logic function of the circuit is not HoLnires 0.5-50
changed Rb_pmos 5-50
Rb_nmos 1-50
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SET Model

B Timing parameters of current pulse: t,= 10 ps and t= 50 ps

W Critical charge (Qcgr): minimum value of Q. causing the change of
logic value at the output of circuit

B SET pulse width: determined for pulses with amplitude above Vdd/?2

B SER was calculated as: SER =k - Flux - Area - exp(-Q:/Qs)
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B Resistive open faults:
» Qg iy decreases by up to 80 % as defect resistance increases
» SER increases by more than one order of magnitude

B Resistive bridge faults have weaker impact on Q. and SER

B Response strongly depends on input logic levels

. VDD VDD
—l— Ro_pmos (input = 00) Py
1.6 —8—Ro_nmos (input=11) |
| —&— Rb_pmos (input = 00) Ro_pmos
o 14 —¥—Rb_pmos (input=11) H
o | \ —®— Rb_nmos (input = 00) 9
g 12 A —4—Rb_nmos (input=11) | INL [— ’ N2 [— I
o ] ——ol —ol Rb_pmos
® 1.0 — ) -
2
S |
S 0.8 1 ' >°_
s Ji a
@ 06 -— IN1 Rb_nmos
= . N4
£ 041 ]
S 1 —o————9 IN2 — lsr(t)
Z 0.2 '
0.0 . . ; . . . . —
0 10 20 30 40 50 60 R°—”m°5¥
Defect resistance (kQ) ==
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SET Pulse Width Change due to Intra-Gate Faults

B Resistive open faults:
» SET pulse width increases as defect resistance increases

» Input logic levels determine the sensitivity

B Resistive bridge faults have negligible impact on SET pulse width

1000

1 I
—l— Ro_pmos (input = 00)

] —@— Ro_nmos (input = 11)
800 —h— Rb_pmos (input = W
600 / —oIIN:L :—v] w«l Rb_pmos
400 / 9 j 9 »—
200 M—:L: IN1 i Rb_nmos

0 IN2

SET pulse width (ps)

lsr(t)

0 10 20 30 40 50 60
Defect resistance (kQ)

Ro_nmos

"W-J T ITL
|
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L. . Inputl
B Similar effects as for intra-gate faults:
» Qg decreases (SER increases) as defect
resistance for open faults increases nputs

» Bridge faults may affect Q. and SER Select
only for low defect resistance

1.2 : .
1.0 —l— Ro_mux (input = 00)
1 —@— Ro_mux (input=11)
0.8 -
S T .—
© 0.2_
§ 0.0 : . , ' r r '
= 0 2 4 6 8 10 12
S 1.4
- 1 —l— Rb_mux (input = 00)
N 1.2 —&—Rb_mux (input =11)
m p
E 1.0
o ]
Z o8
0.6 : . ' r . : :
0 10 20 30 40 50 60

Defect resistance (kQ)
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SET Pulse Width Change due to Inter-Gate Faults

. . . Inputl
B Similar effects as for intra-gate faults:
» SET pulse width increases significantly o
as defect resistance for open faults ' :
. Select
increases (AP )
S5ET
» Impact of bridge faults is weaker L
400
300
- 200 ///5/
e 100 _/ —— Ro_mux (inpu1=00)|
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> 0 2 4 6 8 10 12
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Spacecraft Area Network

.
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Middleware Switch with DMR and SPS

TRmoly =5

PNC
(SGB25RH)

MW Switch
(SGB25_DMR)
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