

Reliable Electronic Devices, Circuits, and Systems

Zoran Stamenković, Marko Andjelković

August 26, 2020 ELICSIR Online Summer School

innovations for high performance microelectronics

	Radiation Effects
2	Radiation-Hard Devices
3 F	Fault-Tolerant Circuits and Systems
4 5	SET Modeling and Characterization
5 N	Middleware Switch Processor

Radiation Effects in Semiconductor Devices

- Natural space radiation (high-energy ionizing particles) may induce electrical noise (single event effect) in many types of semiconductor devices
 - Data corruption, transient disturbance, and high-current conditions
 - Each particle produces an ionization track (and electrical charge)
 - Prompt component
 - Funneling in high-field regions
 - Delayed component
 - Diffusion in low-field regions
- Non-destructive effects
 - Single event upset (SEU)
 - Single event transient (SET)
- Destructive effect in CMOS technology
 - Single event latchup (SEL)

Radiation Effects in Integrated Circuits

- SEU causes the change of state in storage element
 - Memory cells and registers affected
- SET causes a high-voltage impulse on interconnection lines
 - Combinational logic affected
- SEL causes an excessive current flow through the parasitic PNPN structure in CMOS transistor pair

Circuit design and technology dependent

Solutions for Fault-Tolerant Circuits and Systems

- Single event effect (fault) tolerant application specific integrated circuits
 - Device techniques
 - Circuit techniques
 - System techniques
- Circuit and design techniques are not as expensive as device techniques
 - SEU and SET tolerance
 - Triple modular redundancy (TMR)
 - Double modular redundancy (DMR)
 - SEL tolerance
 - Current sensing and power switching
 - SEU, SET, and SEL tolerance
 - Modification of net-list, placement, and routing

Enclosed Layout Transistors

Radiation tolerant MOS transistor designed according to the enclosed layout transistor topology

Enclosed layout transistors and guard rings in a radiation = tolerant CMOS inverter

Rad-Hard Standard Cells

ELT n-mos and p-mos transistor to increase Total Ionizing Dose (TID)

Enhanced guard-rings against Single-Event-Latchup (SEL)

Courtesy of Cristiano Calligaro

Original and Rad-Hard Cells

Courtesy of Cristiano Calligaro

www.ihp-microelectronics.com | © 2020 - All rights reserved |

SRAM for Embedded Memories

www.ihp-microelectronics.com | © 2020 - All rights reserved

Fringe capacitor (M3-M4-M5) to reduce SETs

Courtesy of Cristiano Calligaro

www.ihp-microelectronics.com | © 2020 - All rights reserved

Fault-Tolerant Circuits

area, power consumption, and cost d out

In order to reduce the chip area overhead and keep the design reliability high, a DMR approach is proposed

SET

SEL Protection Switch (SPS)

- Current sensing and power switching
 - Transistor P5 senses the supply current (the higher current, the lower output voltage VDD_a)
 - Feedback activates transistor P6 when VDD_a is under the threshold voltage
 - Output TSTART of transistor N0 triggers a timer

SPS Timing Diagram and Parameters

Supply Voltage and Channel Width Effects on SPS Response

www.ihp-microelectronics.com | © 2020 - All rights reserved

.....

Integration of DMR and SPS

SPS Placement and Control

- It is possible to detect multiple latchup effects
- Control register generates the Poff signal and can be accessed by the system processor

- PNC sets the period of latchup protection mode
- If the latchup occurs, TSTART activates the corresponding control interface which has to save the current counter value
- When the protection phase is over, the control interface activates the TSTOP signal

TMR Circuit with Latchup Protection

Self-voting DMR Circuit with Latchup Protection

.

DMR and TMR Shift Registers (including SPS)

.

Design Flow Modifications

- Use of the standard design tools
- Flip-flops are replaced by TMR or DMR storage elements (FF and voter)
- Duplication of the original net-list
 - Power domains of the original and redundant net-lists are separated
- Memories include protection bits and EDAC logic
- SEL protection switches are placed in layout phase under the power stripes instead of filler cells
- SPS power network is connected in power routing phase to the main power network

Fundamentals of SETs: Parameters and Modeling

Irradiation parameters

- Particle energy
- Direction/location of particle strike
- Technological parameters
 - Channel length
 - Doping profiles
- Design parameters
 - Transistor size
 - Load capacitance
- Operating parameters
 - Supply voltage
 - Temperature

SET modeling

- SET current pulse generation
 - Current pulse source in the target gate of the circuit
- SET voltage pulse generation
 - Current-induced voltage pulse at the gate output
- SET voltage pulse propagation
 - If not electrically or logically masked, induced voltage pulse propagates through the combinational logic
- SET voltage pulse latching
 - Voltage pulse arrives at the input of a sequential element within the latching window
- Critical charge
 - Minimum charge (induced by irradiation) needed to cause a SET

Classification of SET Current Models

- Macro-modeling
 - Current source is implemented as a stand-alone module

- Micro-modeling
 - Current source is implemented within the target transistor
 - Transistor model is a necessity

- Voltage-independent current models
 - Rectangular current pulse model
 - Double-exponential current pulse model
 - Freeman's current model
 - Hu's current model
 - Diffusion current model
 - Roche's current model
- Dual voltage-independent current models
- Voltage-dependent current models
- Piecewise interpolation models
- Look-up table models
- Switch-based models

www.ihp-microelectronics.com | © 2020 - All rights reserved

Rectangular current pulse source

- Very simple for implementation in SPICE
- Neglect the dependence of the SET current on the node voltage

A Use Case: SEL Protection Switch

- SET pulses with an amplitude larger than Vdd/2 will result in triggering false SEL alarms
- SET pulses with an amplitude larger than 10 % of Vdd may result in malfunction of standard cells
- Rectangular and double-exponential current pulse sources have been used as a SET simulation model

SET Analysis with Rectangular Model (Current and Vdd)

- SET-induced voltage pulse at the output of SEL protection switch was analyzed using a rectangular current model
- Amplitude and width of SET voltage pulse increased with the increase of the amplitude of rectangular current pulse
- Amplitude and width of the SET voltage pulse decreased as the supply voltage was increased

SET Analysis with Rectangular Model (Load and PMOS Width)

- Increasing the number of load inverters connected to the output of SPS cell resulted in the decrease of both amplitude and width of the SET voltage pulse
- Amplitude and width of the SET voltage pulse decreased as the width of PMOS sensor/driver transistor was increased
 - For a transistor width of 7.5 μm, the SPS cell was robust (SET voltage pulse was below Vdd/2) to SET-induced charge up to 180 fC

Manufacturing Defects

.....

SET Response in Presence of Resistive Faults

- Goal: to evaluate SET response due to intra-gate faults
- 2-input NAND gate was used as a target circuit
- Analyzed faults:
 - Resistive open faults Ro_pmos and Ro_nmos
 - Resistive bridge faults Rb_pmos and Rb_nmos
- Resistance range range of defect resistance for which the logic function of the circuit is not changed

Fault type	Resistance range ($k\Omega$)
Ro_pmos	0.5 - 50
Ro_nmos	0.5 - 50
Rb_pmos	5 - 50
Rb_nmos	1 - 50

SET Model

SET effects were simulated with double-exponential current model,

$$I_{SET}(t) = \frac{Q_{COLL}}{\tau_f - \tau_r} \left(e^{-t/\tau_f} - e^{-t/\tau_r} \right)$$

- Timing parameters of current pulse: $\tau_r = 10 \text{ ps and } \tau_f = 50 \text{ ps}$
- Critical charge (Q_{CRIT}): <u>minimum value of Q_{COLL} causing the change of</u> <u>logic value at the output of circuit</u>
- SET pulse width: <u>determined for pulses with amplitude above Vdd/2</u>
- SER was calculated as: $SER = k \cdot Flux \cdot Area \cdot exp(-Q_{CRIT}/Q_s)$

- Resistive open faults:
 - > Q_{CRIT} decreases by up to 80 % as defect resistance increases
 - SER increases by more than one order of magnitude
- Resistive bridge faults have weaker impact on Q_{CRIT} and SER
- Response strongly depends on input logic levels

SET Pulse Width Change due to Intra-Gate Faults

Resistive open faults:

- > SET pulse width increases as defect resistance increases
- > Input logic levels determine the sensitivity
- Resistive bridge faults have negligible impact on SET pulse width

Q_{CRIT} Change due to Inter-Gate Faults

Similar effects as for intra-gate faults:

Q_{CRIT} decreases (SER increases) as defect resistance for open faults increases

1.2

1.0

0.8 0.6

0.4 0.2 0.0

1.4

1.2

1.0

0.8

0.6

0

2

10

Δ

20

Normalized critical charge

> Bridge faults may affect Q_{CRIT} and SER only for low defect resistance

SET Pulse Width Change due to Inter-Gate Faults

Similar effects as for intra-gate faults:

- SET pulse width increases significantly as defect resistance for open faults increases
- Impact of bridge faults is weaker

Spacecraft Area Network

Middleware Switch with DMR and SPS

.....

Thank you for your attention!

Stamenković, Zoran

IHP – Innovations for High Performance Microelectronics Im Technologiepark 25 15236 Frankfurt (Oder) Germany Phone: +49 (0) 335 5625 726 Fax: +49 (0) 335 5625 671 Email: stamenkovic@ihp-microelectronics.com

www.ihp-microelectronics.com

innovations for high performance microelectronics

