

Design Techniques for Rad-hard ASICs

Virtual Summer School

Radiation Effects in Electronic Devices, Circuits and Systems

Milos Krstic

Projects ELICSIR/ Space Region Aug 2020

innovations for high performance microelectronics

Agenda

1	Motivation
2	Radiation Effects
3	Addressing SEEs in Digital Systems
4	Optimizing Overhead in Space Applications
5	Design Examples
6	Conclusions

Motivation and goals

- Space applications are imposed with additional requirements, not so critical in traditional application domain
- Temperature: temperature range is extended -55° +125°
- Reliability: depending on the mission requirements could be even 15 or 20 years
- Radiation hardness and tolerance: immunity against radiation effects
- As a consequence additional design steps are required to fulfil the requirements
- The design methods enhancing radiation hardness are known as radiation hardness by design (RHBD), and are usually based on fault tolerance
 - Fault tolerance is always achieved with some (significant!) cost
- How to limit the overhead imposed by fault tolerance?
 - Advanced <u>static</u> low-overhead techniques which provide certain level of fault tolerance with limited overhead
 - <u>Adaptivity</u> techniques which enable fault tolerance only when required

Effects induced by Radiation

Radiation effects are present not just in space applications

Radiation effects can be split in two general categories:

The effects need to be addressed by corresponding measures

Cumulative Effects and Ways against them

- Cumulative effects affect the parametric changes of the transistors (increase of leakage current, change of threshold voltage, reduction of transistor amplification etc.).
 - After total dose accumulation the system may reach the state outside of the specified functional range.
 - Due to the reduced performance of the transistors the respective faults may appear (timing faults for example)
- Cumulative effects are usually addressed:
 - at the level of technology
 - by using specific hardened devices (ELT enclosed layout transistor, JIC junction isolated circuit)
 - by using the transistor sizing (bigger transistors are less prone to the parametric changes)
- Online methods could be used for the detection of the changes

TiD Example: Radiation Assessment of SG13RH

Radiation Source : Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin. Gamma rays provided by Co⁶⁰ source. Dosimetry performed by Farmer Ionization Chamber, nominal photon energy range from 60kV to 50MV.

Test Hardware : Keithley SCS-4200 Semiconductor Parameter Analyzer with Keithley 707B Switch Matrix Custom IHP Test Fixtures for measurements.

SEE Mechanisms

- SEEs are induced by a single energetic particle (e.g. heavy ion)
- Manifested as current flow, leading to subsequent voltage disturbance
- Result in soft errors, i.e. change of logic value stored in memory
- SEE modeling and characterization is a key requirement in rad-hard design

Single Event Transients(SETs)/Single Event Upsets (SEUs)

- High energy particles can cause the bit flipping in logic (SET) or registers (SEU)
- Chip can provide wrong outputs or be brought to non-functional state
- Several ways to addressing these events:
 - transistor sizing
 - special radhard flip-flop architectures (TMR)
 - filtering of transients
 - use of ECC for addressing SEUs in SRAMs

Multi-level SEE Modeling and Simulation

Particle-Matter Interaction Simulations

- Allows to identify the charge deposition in each layer
- Performed with Monte-Carlo based tools:
 - SRIM/TRIM open source simulator

SRIM/TRIM inputs	SRIM/TRIM outputs
Layer structure of device	Charge deposition profile
Particle energy / type	Range of particle in matter
Angle of incidence	LET (linear energy transfer) as a function of range

Device Simulations

- Analysis of charge collection process in a single device (transistor)
- Performed with commercial TCAD tools:
 - Synopsys Sentaurus
- Built-in heavy ion model
- Two operating modes: 2D or 3D
- Can be coupled with SPICE (mixed-mode)

TCAD inputs	TCAD outputs
Device structure and technology parameters	Induced current pulse shape
Particle specifications (LET, strike direction and location)	Induced voltage pulse shape

2D TCAD simulation of SETs in 130 nm inverter

Time (ns)

Gate/circuit simulations

Current injection in SPICE simulations

Limitations of double-exponential model

Bias-dependent current model: realistic

- Common SEE current model:
 - Double-exponential current source

$$I_{SET}(t) = \frac{Q_{COLL}}{\tau_f - \tau_r} \left(e^{-t/\tau_f} - e^{-t/\tau_r} \right)$$

RTL/system Simulations

- Fault injection in complex digital circuits (e.g. processors)
- Faults (SEEs) are modeled as:
 - bit flips (SEUs in memory elements)
 - temporary level changes (SETs in combinational gates)
- Suitable for analysis of SEE propagation effects in large designs
- Performed with RTL (VHDL- or Verilogbased) simulators:
 - Modelsim
 - NCSim

.

Approach	Advantages	Disadvantages
Particle- matter	Very fast simulations (in the order of seconds)	Neglects technology parameters
Device	Accurate analysis of charge collection	Too slow even for simplest structure (can last several hours)
Gate/circuit	Provides insight into electrical effects Fast for small circuits	Neglects some important physical aspects Too slow for complex circuits
RTL/system	Fast analysis of SEE propagation in complex circuits	Neglects electrical and physical aspects

Optimization of SEE Characterization

- Multi-level SEE simulation is time consuming for complex circuits
 - Simulations have to be done for every circuit node
- Optimization approach:
 - Characterization of SEEs in standard cells -> done only once
 - Use characterization data to establish analytical models for SER estimation

Challenges:

- Minimize the simulations
- Establish accurate models
- Apply the models effectively on a large design

Total SER of a digital circuit:

 $SER = SER_{COM} + SER_{SEQ}$

$$SER_{COM} = k \cdot Flux \sum_{i}^{Nodes} Area(i) \cdot e^{\frac{-Q_{CRIT}(i)}{Q_S}} \cdot P_{EM} \cdot P_{LM} \cdot P_{TM}$$

$$SER_{SEQ} = k \cdot Flux \sum_{i}^{Nodes} Area(i) \cdot e^{\frac{-Q_{CRIT}(i)}{Q_S}} \cdot P_{LM} \cdot P_{TM}$$

P_{EM} = Probability of electrical masking

- P_{LM} = Probability of logical masking
- **P**_{TM} = Probability of temporal masking

SEE Generation Modeling – Critical Charge

Critical charge model based on superposition principle

$$Q_{CRIT} = Q_{NOM} + \sum_{i=1}^{N} Q_i \cdot (K_i - K_{iNOM}) + f_{ERROR}$$

Critical charge in terms of target gates's size factor

$$Q_{CRIT} = Q_{NOM} + Q_1 \cdot (S - 1) + f_{ERROR}$$

Q_{CRIT} values are the same for some input levels

Allows to reduce the number of simulations during standard cells characterization

Single Event Latchups

 Abnormal high current caused for example by single energetic particle causing in CMOS creation of parasitic bipolar transistors

- Some technologies are SEL hard (Silicon on Insulator, FDSOI)
- Strict design rules, substrate contacts, isolating MOS
- Protection circuits on the board (detecting SELs and switching off the power supply
- On-chip protection circuitry

Addressing SEUs in Digital Systems

- In order to address SEUs the RHBD methods need to be applied
- The methodology could be applied at the different abstraction level of the design process
 - Cell level
 - RTL level
 - System level
- The methods could be static or dynamic
- Usual approach to deal with radiation induced errors are based on fault tolerance
 - The methods lead to overhead, and the goal is to reduce this overhead as much as possible without comprimising the application requirements

Digital Design Flow – Stages + Fabrication

- Design Entry \rightarrow RTL Design Description
- Simulation \rightarrow RTL simulation, Timing Simulation, PL Timing Simulation
- Synthesis \rightarrow Translate RTL description to technology dependent gate level design
- Place & Route (PnR) \rightarrow Physical Implementation of synthesized design
- Signoff → Geometrical, Electrical & Connectivity Verification
 - Design Rule Check/Electrical Rule Check & Layout Versus Schematic → DRC/ERC & LVS
- Fabrication \rightarrow Mask layout send to fab in binary format (e.g. GDSII)
- Some additional/modified steps needed for radhard designs

Almost all fault-tolerant techniques are based on the redundancy

- Hardware redundancy (N-modular, triple and double modular redundancy)
 - Could be preferable choice for safety critical systems
- Information redundancy (error detection and correction)
- Time redundancy
- Software redundancy

Hardware Redundancy with TMR

- The general approach is N-modular redundancy
 - Such systems are also known as M-of-N Systems
 - N=3, Triple Modular Redundancy (TMR)
 - N=2, Dual Modular Redundancy (DMR)

How TMR works?

Hardware Redundancy with TMR

- The general approach is N-modular redundancy
 - Such systems are also known as M-of-N Systems
 - N=3, Triple Modular Redundancy (TMR)
 - N=2, Dual Modular Redundancy (DMR)

Hardware Redundancy with TMR

- The general approach is N-modular redundancy
 - Such systems are also known as M-of-N Systems
 - N=3, Triple Modular Redundancy (TMR)
 - N=2, Dual Modular Redundancy (DMR)

• Voter (V) is the single point of failure!

Alternative TMR-Architecture

.

• Full TMR-architecture, including TMR-Voter

Radiation Hardness on the Cell Level

- The usual approach of space design companies is to address the radiation hardness at the cell level
- As a result the special cell library is designed (usually known as <u>radhard libary</u>)
- Important elements of the radhard cell library:
 - <u>Radiation tolerant flip-flops</u>: in order to avoid SEUs and filter SETs
 - TMR, DICE, HIT flip-flops
 - <u>Special buffers</u> tolerant against SETs: for clock and reset tree
 - Sizing of transistors could influence radiation sensitivity
 - <u>Guard Gates</u>: for SET filtering
 - Special architecture
 - <u>IO pads</u>, including SET filtering
 - Radhard SRAM:
 - radiation tolerance of the control interfaces
 - increased critical charge of the cell
 - special cell placement to avoid multi-bit upsets (MBU)
 - ECC for SEU correction

- Architecture based on the dupplication of the crosscoupled gates in order to avoid that single node upset can lead to latch state change.
- The other nodes are the "keepers" of correct state
- This architecture is widely used in the industry relevant radhard standard cell designs

T. Calin, M. Nicolaidis, and R. Velazco, "Upset hardened memory design for submicron CMOS technology," *IEEE Trans. Nucl. Sci.*, vol. 43, no. 6, pp. 2874–2878, Dec. 1996.

Guard Gate

- Guard gate is used as a filter against SETs
- The structure is based on the C-element input stage without keeper

A. Balasubramanian, B. L. Bhuva, J. D. Black, L. W. Massengill, RHBD Techniques for Mitigating Effects of Single-Event Hits Using Guard-Gates

TMR Flip-Flops

- TMR architecture could be effectively used against SEUs
- Single SEU in TMR scheme can be outvoted
- Cell placement is very critical to avoid MBUs (multiple bit upsets)
- Incoming SETs can be avoided with adding delay on input line
- The solution is very expensive in terms of additional hardware and power overhead

TMR in Application

The third flip-flop is hit by a particle, voter (MAJ gate) corrects the output

- TMR requires a triplication of sensitive logic
- A voter circuit (majority voter)

When and how to add TMR?

TMR with D-SET mitigation

TMR Design Flow(s) – Soft-TMR – Approach I

- TMR can be directly introduced at Design Entry Stage
 - Triplication of flip-flops and other logic is described at RTL Level
 - Voter functionality added in each flip-flop that should be protected:

 $\rm Y$ <= (A and B) or (B and C) or (A and C)

- **Pro:** Straigtforward, no additional effort except modification of HDL code
- **Cons** : More complicated further steps of design process, it is difficult to pre-evaluate the library, use of standard RTL-IPs not possible.

TMR Design Flow(s)– Soft-TMR – Approach II

Endmodule

- **Pro:** easy to constrain, no modification of source code
- **Cons** : Same as previous approach, additional design steps
TMR Design Flow(s) – TMR – Library Approach III

Link pre-characterized RH-cells/TMR flip-flops at synthesis stage

- ΔTMR flip-flops are part of a special radhard standard cell library
- TMR cells are seen as common, but larger and slower flip-flops
- Simply mapped during standard compilation
- **Pro:** Radiation-Hardness By Design (RHBD) integrated on library level
- **Cons**: Standard cell design of TMR cells and characterization is an additional high-effort task, higher overhead compared to previous approaches

How to introduce TMR – Libarary approach IV (not often used)

- Full triplication of sensitive logics and modules at layout level
 - Triplicated blocks must be conneced at upper hierarchy level
 - Design constraints must be modified (complex at system level)
- **Pro:** Effective Radiation-Hardness By Design (RHBD)

Radiation Testing

- Radiation testing is performed in the special labs equipped for TiD or SEE tests
- For TiD there are plenty of labs supporting Co-60 gamma radiation experiments
- SEE tests are possibile only in few labs (UCL, RADEFF etc.)
- For SEE tests special test setup is needed and the corresponding test vehicle
- Typical test vehicle shift register

 TiD tests have also specific procedure

.

Radiation Testing

Radiation Testing

.

Radiation Testing

.....

Consequences and Solutions

Redundancy = Power/Area Increase and performance drop! The overhead could be more than N times baseline

The classical FT techniques could be performed in the more optimal way: Static solutions:

 Limiting the level of fault tolerance but significantly reducing overhead (partial FT, ECC codes etc.)

Dynamic (adaptive) solutions:

- Enabling system adaptivity: using overhead only when it is needed
- Adaptivity is the key requirement for complex system implementation in advanced technologies

Example solutions:

- Static partial and selective fault tolerance, FEDC
- Adaptive adaptive MPSoCs

<u>Resilience</u>: Addressing with the same mechanisms different challenges

Faults, PVT variations, security

Static Solutions

Selective Fault Tolerance – Motivation

- Continuous reduction of transistor size increases sensitivity for upsets in sequential elements
 - Mainly radiation induced
- Especially important for space applications because of higher particle radiation
- Protection of flip-flops against soft errors in digital circuits incurs significant overheads
- Reduce protection costs by protecting only flip-flops in which faults have an intolerable impact
- Identify critical flip-flops in which faults can produce
 - an effect on system output
 - persistent error in system state

A. Breitenreiter, et al, "Selective Fault Tolerance by Counting Gates with Controlling Value" 2019 IEEE 25th International Symposium on On-Line Testing And Robust System Design (IOLTS), Rhodes Island, Greece, July 2019, accepted paper.

[[]https://www.esa.int]

Partial Fault Tolerance

- We can reduce the overhead if we protect with redundancy only the parts of the systems which are most critical (control logic, command/status registers)
- This method is called partial fault tolerance
 - However, some part of the system remains fully unprotected
- Example: Design of Digital Beamforming Network processor for synthetic aperture radar (EU Project DIFFERENT)
- Digital baseband IC and in IHP technology
 - DFBN Chip tape-out Aug 2015 46 mm2 in SGB25V
 - Tested on wafer and operational up to 250 MHz!
 - Optimized overhead
 - saving 20% in area and 33% in power
 - radiation hardened TMR flip-flops in control logic
 - Standard flip-flops in datapath

DBFN Baseband Processor - 46mm² in SGB25V, Sep 2015

Identification of Critical Flip-Flops – Overview of Methods

- Fault injection
 - Very high effort
- Error propagation probability calculation
 - High effort
 - Doesn't scale well for large circuits
 - Limited consideration of reconvergent paths
- Search for methods with lower complexity by higher level of abstraction
- Structural netlist analysis
 - Identification of critical flip-flops by structural properties directly derived from netlist
 - Reduced complexity
 - Sufficient accuracy?

Proposed Method

- Two effects of faults regarded as critical
 - Propagation to primary outputs
 - Output paths with low probability of masking
 - Permanent error in system state
 - Feedback paths with low probability of masking
- Logical masking by gates with controlling value
 - AND
 - Controlling value '0'
 - One input '0' \rightarrow output '0' independent of the other input
 - XOR
 - No controlling value
 - Every transition at the inputs causes a transition at the output
- Idea:
 - Paths with low number of gates with controlling value have low probability of masking
 - Select Flip-Flop for protection if
 - on cycle with a low number of gates with controlling value
 - Path to output with a low number of gates with controlling value

54

August 31, 2020

International Symposium on On-Line Testing And

A. Breitenreiter, et al, "Selective Fault Tolerance by Counting Gates with Controlling Value" 2019 IEEE 25th

Proposed Method – Illustration of the criteria

The red flip-flop

- is on a cycle with c = 4 gates with controlling value
- has an output path with I = 1 gates with controlling value

Evaluation Results – Merged Results

- Effectiveness of flip-flop selection based on the number of gates with controlling value on the output paths and number of gates with controlling value on cycles
- Threshold for the number of gates with controlling value on cycles c_{thr}

Protecting about 75% of all flip-flops can avoid 95% of the errors

Another Method for Selective Fault Tolerance

- Fault tolerance is guaranteed only for input assignments of critical tasks, since it is not required for other signals
- We can make the trade-off between the FT level and area increase

*Reducing the Area Overhead of TMR-Systems by Protecting Specific Signals, M. Augustin, M. Gössel, R. Kraemer, Proc. IEEE IOLTS 2010 *Eine neue Fehlertoleranzmethode zur Verringerung des Flächenaufwandes von TMR-Systemen, M. Augustin, M. Gössel, R. Kraemer, Proc. ZuE 2010

Improvements of Selective Fault Tolerance

- Methodology could be easily integrated in standard design flow
 - Selective Fault Tolerance applicable to real industrial designs
- The reduction of area overhead compared to TMR is significant
 - Near to the computationally very intensive solution
- The protection of 20% of all possible input/output assignments leads to an area reduction of one complete system compared to TMR

*Reducing the Area Overhead of TMR-Systems by Protecting Specific Signals, M. Augustin, M. Gössel, R. Kraemer, Proc. IEEE IOLTS 2010 *Eine neue Fehlertoleranzmethode zur Verringerung des Flächenaufwandes von TMR-Systemen, M. Augustin, M. Gössel, R. Kraemer, Proc. ZuE 2010

Full Error Detection and Correction (FEDC)

- Focused on full error correction
- All injected SETs could be corrected
- Suitable for long transients as well
- Effective against timing errors

Hardware/power overhead reduced compared with TMR

Saves around 28% power

Circuit	Dynamic Power [mW]	Area Comb [mm2]	Area Sequential [mm2]	Area Total [mm2]
TMR	0,600	0,0421	0,0125	0,0470
FEDC	0,432	0,035	0,0126	0,0418
Milos Krstic, et al., Enhanced Architectures for Soft Error Detection and Correction in Combinational and Sequential Circuits, Microelectronics Reliability, 2016				

www.ihp-microelectronics.com | © 2020 - All rights reserved |

Asynchronous Full Error Detection and Correction - AFEDC

F. Kuentzer, M. Krstic, Soft Error Detection and Correction Architecture for Asynchronous Bundled Data Designs, IEEE Transactions on Circuits and Systems I: Regular Papers – TCAS-I, 2020

www.ihp-microelectronics.com | © 2020 - All rights reserved | ENROL 2020

18.06.2020

.....

Multiprocessors have varying application requirements

- performance
- dependability (fault-tolerance, lifetime, ...)
- power consumption

E.g. Earth observation satellite

- image processing
- orbit change
- waiting new task

Target: NMR mechanisms, lifetime aspect

- Self-repairable system based on configurable micro-operation units, selected by the programmer
- Timing-critical applications are also considered
- Dynamically adapting to the application requirements
- Trade-offs between higher endurance, fault-tolerance, performance and power efficiency

A. Simevski, R. Kraemer, M. Krstic, Investigating Core-Level N-Modular Redundancy in Multiprocessors, IEEE MCSoC-14

Framework addressing fault-tolerance and aging effects for space and automotive applications

- Aging monitors
- Automated HW/SW verification, design & test
- Programmable NMR voters

A. Simevski, R. Kraemer, M. Krstic, Investigating Core-Level N-Modular Redundancy in Multiprocessors, IEEE MCSoC-14

.....................

De-stress mode (2 active cores)

.

- Core-level NMR voting in each clock cycle !
- Masking faults, no need for instant recoveries for N>2
- Dynamic reconfiguration NMR on-demand

Implementation and Results

Test ASIC named FMP implemented and tested

- 8-core system based on 32-bit internal processor
- Fully functional in IHP 130 nm technology
- Youngest-First Scheduling Methodology (YFSM) could increase the system lifetime up to 31%

Resilience methods

What is Resilience?

Resilience - "an ability to recover from or adjust easily to change" (Merriam-Webster)

What can be this change in our digital systems?

Environmental changes:

- Voltage/Temperature variations
- External effects (Radiation (SEEs))
- Ageing and manufacturing issues
- Security threats (side channel attacks)
- We need some measures to address those changes
- We already know that addressing faults will cause some overhead
 - However, addressing the other aspects also leads to overhead
 - Example: Supply management unit and its overhead
- Synergy needed in addressing those challenges!
 - In this way the <u>optimization of the overhead</u> need to be performed

Example: PISA System Power robust IC design for Space Applications

- Leon-based multiprocessor using IHP's framework
 - De-stress (Power Gating, Clock Gating, Adaptive Voltage Scaling)
 - Fault-tolerant (Core-level NMR-on-Demand, ECC)
 - High-performance
 - Addressing at the same time
 - Soft errors induced by particle hits
 - Voltage variation induced errors

- Waterbear framework controller
 - Power management
 - Clock management
 - Framework control (e.g., modes: de-stress, fault-tolerant, hiperformance)
 - Error management (both from fault-tolerant mode and ECC)
 - Aging observation and control (aging monitors)
 - Temperature sensors
 - Other management functions (AHB priority, SRAM enable/disable, ...)
 - Synergetic integration of the different fault detection and correction mechanisms
 - Overhead optimization

Target chip – power domains

Each core powered by own Voltage Regulator

Power domains on Chip

PISA IC – Error Resilient Multi-Processor Chip

Intelligent Sensing: Background

- Two main groups of space radiation particles
 - 1) Trapped by planetary magnetospheres (e.g. Van Allen belt in earth)
 - 2) Transient radiation particles:
 - Galactic Cosmic Rays (GCRs)
 - Solar Particle Events (SPEs)
- Real-time SEU rate monitoring & prediction is vital in space applications
 Dominate the radiation environment

2.3*10-7

SEU rate (upsets/(bit*day)) of a 0.25-um SRAM during 4 large

28,2003

SPEs

Jan 20,2005

8.1*10⁻⁸

6.5*10⁻⁷

79

2.4*10-5

Embedded Single Event Upsets (SEUs) Monitor

- Counting SEUs on SRAM, detect permanent faults in memory cells and classify the radiation level
- EDAC (HSIAO (39,32) code), Scrubbing
- Non-standalone SEU monitor
- Combining the SEU monitoring and data storage functions in the same SRAM module
- Negligible cost and overheads (< 1%)

J. Chen, M. Andjelkovic, A. Simevski, Y. Li, P. Skoncej and **M. Krstic**, Design of SRAM-based Low-Cost SEU Monitor for Self-Adaptive Multiprocessing Systems, EUROMICRO Digital System Design Conference (DSD 2019)

80

Data Analysis – Solar Particle Events (SPEs) Prediction

- Embedded approach for the prediction of SPEs by forecasting in-flight SRAM SERs in space applications
- Combining the SEU monitor, publicly available flux databases and the offline trained machine learning model
- Predicting the SRAM SEU rate one hour in advance and fine-grained hourly tracking of SEU rate variations during SPEs as well as under normal conditions

81

Intelligent Decision Making: Hardware Accelerator Design

- Hardware accelerator for forecasting the in-flight SEU variation
- Implemented the linear regression model as the hardware accelerator with a negligible cost
- Predict the increased radiation levels minimizes the risk that the target system will be exposed to harsh conditions without being sufficiently protected

82

Example Space ASICs: Development of the RTU ASIC Chip

- Remote Terminal Unit ASIC under development for small satellite applications
- Complex mixed-signal dual-chip in package solution
- Target technology internal 0.25 um CMOS
- Tape out Feb 2015 fully functional confirmed measurements!
- Radiation hardness based on radhard TMR library of flip-flops
 - TMR approach compatible to the standard design flow

Example Space ASICs: DBFN Baseband Processor for Synthetic Aperture Radar

- The DIFFERENT project tackles the development of low-cost highly-integrated compact radar for formation flying multistatic SAR applications.
- IHP is designing DFBN baseband chip in SGB25V technology
 - This chip includes high-speed processing and IO interfaces
- Fabrication of digital baseband IC and RF MMICs in IHP technologies
 - DFBN Chip tape-out Aug 2015 46 mm2 in SGB25V
 - Tested on wafer and operational up to 250 MHz!

Digital Backend

Optimized overhead (reduced by 20% in area and 33% in power)

Ka-Band

- radiation hardened flip-flops in control logic
- Standard flip-flops in datapath

RF Frontend

Architecture of RadarModule in DIFFERENT

DBFN Baseband Processor - 46mm² in SGB25V, Sep 2015

IHP responsible for digital IP design and verification

- **10 BaseT/100BaseTx PHYs fully functional**
- Radiation hardness confirmed at the end of 2018
 - 100 Krad TiD no effects on BER
 - SEE Tests has shown Mean Time Between Failure (MTBFs) of 940 years
- Commercialization steps currently planned with coordinator Arguimea

Example Space ASICs: EU Project SEPHY – Space Ethernet Physical Layer Transceiver

Radiation hardened 10/100 Ethernet physical layer transceiver for the space market

SEPHY Chip

150 nm CMOS process, ATMEL radhard PDK

www.ihp-microelectronics.com | © 2020 - All rights reserved

Goals

 Development of 1.6 2.5Gbps SERDES IP and corresponding chip for space applications

IHP Tasks

- Digital IP design
- Fabrication & assembly in 130 nm BiCMOS technology of IHP
- Characterization & radiation tests

Challenges

- Combining rad-hard with highspeed design techniques
- High-speed CMOS implementation of 2x 8b/10b-en/decoding and bitalignment

Example Space ASICs: SPAD – Development of a SPace-qualified ADC (ProFIT/ILB)

SPAD's main obective is the development of a radiation-tolerant 14-

Specification:

- Technology: SG13S, Sampling rate: 10-15 Msps, ENOB 13, APB interface, SPI, System speed: > 125 MHz, Power: < 100 mW</p>
- RH-Robustness: 67 MeV LET (SEU/SEL), 20 MeV LET (SET)

bit, low-power Analog – to – Digital converter (ADC)

apps execution pipeline with FPU and DSP System

Peaktop architecture (incl. novel ISA)

Develop a completely

European, ITAR-free

µcontroller for space

- Formally-verified C compiler, RTOS and toolchain
- Demonstrator board
- Start-up for selling the microcontroller (and for customer support).

Example Space ASICs: MORAL - Export-free rad-hard µcontroller for space apps

IHP SiGe BiCMOS Technologies for Space Applications

IHP Processes and PDKs for Space Applications

Summary I of III

Status : 2019

		SGB25V/RH	SG13S/RH
•	Process Description	SiGe HBTs npn Peak f _T /f _{MAX} 75/95GHz 250nm CMOS (V _{DD} =+2.5V;T _{OX} = 5.8nm)	SiGe HBTs npn Peak f _T /f _{MAX} 220/340GHz 130nm Dual Gate –Oxide CMOS (V _{DD} =+1.2V, +3.3V ; T _{OX} = 2nm / 7nm)
	Applications	Mixed-Signal MMIC/ASICs up to Ku Band	Mixed-Signal MMIC/ASICs up to W-Band
-	Commercial Qualification Based on JEDEC Standard JP001.01 EPPL/QML/QPL (ESCC QPL, ESCC QML, MIL QPL, JAXA QPL)	Re-Qualified 2010 active & stable > 10 years (2005) EPPL Listed 2018	completed 2014 EPPL under preparation
	 Radiation Assessment (Analog) HBT npn (all devices) PMOS NMOS (WG=1µm) ELT-NMOS (RHBD Device) 	completed PASS TID 800krad(Si) no ELDRS TID > 550krad(Si) PASS TID 100krad(Si) Characterized up to 500krad(Si) TID > 550krad(Si)	completed PASS TID >1210krad(Si) no ELDRS TID > 200 (HV) / 500 (LV) krad(Si) PASS TID 50krad(Si) (LV) Characterized up to 500krad(Si) TID > 900krad(Si)

IHP Processes and PDKs for Space Applications

Summary II of III

Status : 2019

	SGB25V/RH	SG13S/RH
 PDK Availability Access Status 	completed NDA/EXPORT License	In development -Early Access NDA/EXPORT License
CMOS Std Cell Core and IO Libraries	Dolphin SESAME2-LP core cells + special RHBD cells (IHP) (80 cells) Saphyrion SAGL (25 cells) (Tested for SEU/SEL only)	IHP IXC013RH (~ 90 cells)
 Radiation Assessment (Digital) TID CMOS Libraries 	100krad(Si) – 300krad(Si) SEU/SEL completed SEL Threshold > 65MeV/cm ² /mg (RHBD IHP cells) SEU Threshold > 30MeV/cm ² /mg (IHP RTMR FF)	100krad(Si) – 300krad(Si) SEU/SEL completed SEL Threshold > 65MeV/cm ² /mg (RHBD IHP cells) SEU Threshold > 30MeV/cm ² /mg (IHP RTMR FF)

IHP Processes and PDKs for Space Applications

Summary III of III

Status : 2019

	SGB25V/RH	SG13S/RH
 Evaluation Testing in acc. ESCC No. 2269010 	completed	not yet performed
Operation Temperature (max rated T _j)	-55°C to +125°C	-55°C to +125°C (TBC)
 Test Vehicles in acc. ESCC No. 2269010 	TCV, DEC-I/-II, RIC	TCV, DEC –I DEC-II(CMOS, Bipolar) RIC in progress
 Radiation Tests TCV (Devices, analog) DECs (Digital, Analog BiCMOS) RIC (Mixed-Signal IC) 	completed " DEC-I (SEU/SEL), Early structures TID + SEE LO RIC	completed " DEC-I (SEU/SEL), Early structures planned
 Endurance Testing HT & RT HBT npn- devices HBT lifetime determination CMOS devices CMOS Core & IO Std Cell Library 	passed very stable : no or low drifts characterization available drifts are mesured and defined lifetime determination ~ 20 years	not yet performed
Additional Tests (Reliability)	SiGe HBT HCI & Lifetime Estimation	SiGe HBT HCI & Lifetime Estimation

Conclusion

- Designing digital systems for space requires additional design steps
- Changes of the design flow are present from modeling, over library design to the general design flow and used architectures
- Most of the solutions are based on fault tolerance that always causes significant hardware & power overhead
- Different methods how to limit this overhead exist
 - Static techniques for reducing power overhead, but also reducing fault protection
 - Adaptive techniques enabling dynamic trade-off power-reliability

Design examples have been provided

IHP technology is evaluated for the space applications

Special thanks to current and former members of my team that contributed to slides: Vladimir Petrovic, Aleksandar Simevski, Markus Ulbricht, Anselm Breitenreiter, Rizwan Syed, Felipe Kuentzer, Steffen Weidling, Patryk Skoncej, Yuanqing Li, Oliver Schrape, Junchao Chen

Thank you for your attention!

Milos Krstic

IHP – Innovations for High Performance Microelectronics
Im Technologiepark 25
15236 Frankfurt (Oder)
Germany
Phone: +49 (0) 335 5625 729
Fax: +49 (0) 335 5625 671
Email: krstic@ihp-microelectronics.com

www.ihp-microelectronics.com

innovations for high performance microelectronics

