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MOSFET used as dosimeters

-detector dimensions:  
 0.42 x 0.49 x 0.1 mm3

Low statistics problems

-MOSFET response:  
energy deposited in the SiO2 die

-very low statistics: 30 days for 
an uncertainty of 10% (k=3) 
 [Intel Hapertown E5405 2.0 GHz]



•Monte Carlo simulation 
of rad iat io n-matter 
interaction 

•Sampling distributions 

•Some simple exercises

Outline
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- Monte Carlo techniques: 
   procedures using random numbers  
   to solve problems

- von Neumann y Ulam at Los Álamos (password) 
   but: Comte de Buffon (18th. century)

- problems in which chance is essential: 
   simulation of stochastic systems

- deterministic calculations reformulated in 
  terms of probability distributions:  
   calculation of integrals
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a tool of interest in many fields:

MC simulation of radiation-matter interaction



➡electron/positron surface spectroscopy 
➡electron microscopy 
➡microanalysis with electron probe 
➡design and use of radiation detectors 
➡dosimetry 
➡radiotherapy 
➡etc.

a tool of interest in many fields:

MC simulation of radiation-matter interaction
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which material media are we interested in?

-gases, liquids or amorphous solids 

-particles are scattered randomly 

-molecular weight: 

-number of molecules per unit volume  

  in the material: 

AM =
�

i

ni Ai

N = NA
�

AM

homogeneous materials with uniform density
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-scattering model: 
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         energy loss after the interaction 
         solid angle in the new direction
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- independent of �

-total scattering cross section:
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A,B
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F(s)N�Tds = f(s) ds
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•iterative repetition of this algorithm until 
-particle energy smaller than absorption energy 
-particle out of the material medium

•problems to be solved:

-variance reduction techniques

-crossing of interfaces 

-statistical estimators: quantities of interest! 

MC simulation of radiation-matter interaction

-charged particles, other energies, etc.

-how to sample probability distributions?
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- random numbers can be obtained in: 
   physical processes of random character     
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i 1 2 3 m
ni n1 n2 n3 . . . nm

� � � �
di 1 0 1 . . . 1

ni ⌘ number of disintegrations in �t
di ⌘ 0 or 1 according ni being even or odd
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VERY SLOW PROCESSES

Random number generation 
Uniform distibution U(0,1)

- tables  
(p.ej.: Abramowitz and Stegun)

same results are obtained than using 
pseudo-ramdom numbers

- random numbers can be obtained in: 
   physical processes of random character     

(radioactive processes, electric noise, etc.)
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- algorithms based on congruence relations 

Random number generation 
Uniform distibution U(0,1)
- pseudo-random numbers:

- basic rules: 
generated numbers: uncorrelated 
sequence: as long as possible 
generating algorithm: as quick as possible

Ik = a Ik�1 + c (modM)

   obtained with the computer (!!!) 



φ = f(ξ) = 16805 ξ (mod 223)

semilla
inicial

x

❄

✛ k = 1

k ≤ 55 ✲no k=55
j=24

❄

śı

y = f(x)
z = f(y)

Ik = 223y + z
k = k + 1

✲ ✲ Ik = (Ik + Ij) (mod 247)

❄

k = k − 1; k = 0 ⇒ k = 55
j = j − 1; j = 0 ⇒ j = 55

✻

⇑

☛
✡

✟
✠RAND=Ik/247

✞✝ ☎✆LLAMADA

Carlsson algorithm 

initial seed
CALL



      FUNCTION RAN1(IDUM)
      INTEGER IDUM,IA,IM,IQ,IR,NTAB,NDIV
      REAL RAN1,AM,EPS,RNMX
      PARAMETER (IA=16807,IM=2147483647,AM=1./IM,IQ=127773,IR=2836,
     >           NTAB=32,NDIV=1+(IM-1)/NTAB,EPS=1.2E-7,RNMX=1.-EPS)
      INTEGER J,K,IV(NTAB),IY
      SAVE IV,IY
      DATA IV /NTAB*0/, IY /0/
      IF (IDUM.LE.0.OR.IY.EQ.0) THEN
        IDUM=MAX(-IDUM,1)
        DO J=NTAB+8,1,-1
          K=IDUM/IQ
          IDUM=IA*(IDUM-K*IQ)-IR*K
          IF (IDUM.LT.0) IDUM=IDUM+IM
          IF (J.LE.NTAB) IV(J)=IDUM
        CONTINUE
        IY=IV(1)
      ENDIF
      K=IDUM/IQ
      IDUM=IA*(IDUM-K*IQ)-IR*K
      IF (IDUM.LT.0) IDUM=IDUM+IM
      J=1+IY/NDIV
      IY=IV(J)
      IV(J)=IDUM
      RAN1=MIN(AM*IY,RNMX)
      RETURN
      END

Press W H, Teukolsky S A, Vetterling W T and Flannery B P  
Numerical Recipes in Fortran 2nd ed.  
New York: Cambridge University Press, 1992 
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Other distributions

- inverse transform method  
(or variable change method) 

- acceptance/rejection method 

- Metropolis method 
(or random walk method)
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- to sample: uniform PDF sampling equation
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� =
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- to sample: Gaussian PDF sampling equation
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Random number generation 
Other distributions: inverse transform method 
- to sample: Gaussian PDF sampling equation

� =
� x

xmin

dy p(y)

pG(x) = N(0, 1) =
1⇥
2�

exp
�
�x2

2

⇥

x1 =
⇤
�2 ln �1 cos(2⇥�2)

x2 =
⇤
�2 ln �1 sin(2⇥�2)

, �1, �2 ⇥ U(0, 1)

p(x1, x2) = pG(x1) pG(x2) =
1
2�

exp
�
�x2

1 + x2
2

2

⇥

p(x1, x2) dx1 dx2 =
⇤
r exp

�
�r2

2

⇥
dr

⌅ ⇤
1
2�

d⇥

⌅

Box-Müller method
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Random number generation 
Other distributions: acceptance/rejection method
- to sample p(E) , E � (0, Emax)

-let us define M | p(E) < M , ⇥E � [0, Emax]

-we generate Ei � U(0, Emax) , mi � U(0, M)

X

if 
     is accepted

p(Ei) � mi

Ei
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Random number generation 
Other distributions: Metropolis method
- to sample any p(x)

xi = xi�1 + D(2 � � 1)(x0, D) � � U(0, 1)

p(xi) � p(xi�1)

yes
X = xi returns

X

no
� � U(0, 1)

yes

no

p(xi)/p(xi�1) > �

X = xi�1

be careful
� ⇥ 60� 80%
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1. choose a probability distribution

Simple exercises 
Sampling distributions

2. sample the distribution using the  
    algorithms just described

3. build up the histogram corresponding 
   to the numbers obtained in the sampling

4. compare distribution and histogram
NORMALIZATION!!!

CHANGE BIN SIZE AND NUMBER!!!
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-le us define M | p(E) < M , ⇥E � [0, Emax]

-we generate Ei � U(0, Emax) , mi � U(0, M)

X

I =
� Emax

0
dE p(E)

Simple exercises 
Integral calculation

I = M Emax

�
Nint

N
± �

⇥

� =
1
N

⇤

Nint

�
1� Nint

N

⇥

           number of interior 
           points (e. g.      )
Nint �

P2

           number of  
           generated points

N �
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I =
� Emax

0
dE p(E)

E
E1E2 Emax

p(E2)

p(E1)

p(
E

)
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“crude” Monte Carlo method

-we generate

I =
� Emax

0
dE p(E)

{Ei � U(0, Emax), i = 1, . . . , N}

� =
1⇥
N

�
1
N

N⇤

i=1

[p(Ei)]
2 � p2

⇥1/2

E
E1E2 Emax

p(E2)

p(E1)

p(
E

)

I � p =
1
N

N�

i=1

p(Ei)
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� = 4 · A

-we generate
{xi 2 U(0, 1), i = 1, . . . , N}

I =
1

N

NX

i=1

q
1� x

2
i

p(x) =
p

1� x
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� = 4 · A

-we generate
{xi 2 U(0, 1), i = 1, . . . , N}

I =
1

N

NX

i=1

q
1� x

2
i

p(x) =
p

1� x

2

1000 3.13   0.03

100 3.18    0.09±

�N

10 3.4    0.2±

±

100 78 3.12    0.17

1000 787 3.15    0.05±

±

�Nint

10 8 3.2    0.5±

Simple exercises 
Integral calculation: determination of �



Simple exercises 
Queue dynamics
-a simple problem: medical consultation 
Problem: we want studying how the number of patients 
waiting in a medical consultation behaves and analyze 
possible strategies to proceed in the better (or not) way 
-determine the number of waiting patients in each moment 
-determine the waiting time of each of them

Ingredients: 
•Np patients appointed each tapp minutes 
•consultation time: tc sample in a given PDF 



tapp = 5 min
U(2 min, 10 min) N(5 min, 1 min)

tapp + 1 min * n

Wai$ng'$me'for'each'pa$ent'(le3'panel)'and'queue'length'as'a'func$on'of'$me'(right'panel)'obtained'
for'the'Gaussian'distribu$on'with'the'modified'appointment'schedule.'

Wai$ng'$me' for' each'pa$ent' (upper'panels)' and'queue' length' as' a' func$on'of'$me' (lower'panels)'
found'for'the'uniform'(le9'panels)'and'Gaussian'(right'panels)'distribu$ons.'

N(5 min, 1 min)



Thanks for the attention


