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Semiconductor Supply Chain (SSC)
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Verification Life Cycle
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> Verification > Architecture > Pre-Silicon > Emulation > Post-Silicon > [CHE 17]
Planning Verification Verification FPGA Prototyping Verification [XIA 16]
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Verification Life Cycle

A Verification planning

starts with the product planning, and continues during the system
development phase.

SoCJ B

defines necessary IPs.

defines connection and communication interfaces,

determines various power, performance, security, and
energy targets

Verification Architecture> Pre-Silicon > Emulation > Post-Silicon >
Planning Verification Verification FPGA Prototyping Verification

KI-PRO
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Verification Life Cycle
A Verification planning
starts with the product planning, and continues during the system
development phase.

SoC/ B

~J

defines necessary IPs.

~J

defines connection and communication interfaces,

determines various power, performance, security, and
energy targets

creates appropriate test plans, test cards, and various monitors,
checker, exercisers, etc.

Verification Architecture> Pre-Silicon > Emulation > Post-Silicon > i
Planning Verification Verification FPGA Prototyping Verification
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A Architecture verification

defines functional parameters of the design (cache size, pipeline depth,etc).

determines communication protocols among IPs

determines power and performance management schemes, etc

SoC/

)

Verification
Planning

Architecture
Verification

Pre-Silicon
Verification
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Emulation
FPGA Prototyping
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Post-Silicon
Verification

)

[CHE 17]
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Verification Life Cycle
3 Architecture verification

defines functional parameters of the design (cache size, pipeline depth,etc).
determines communication protocols among IPs
determines power and performance management schemes, etc

3 Most important verification activities:

Functional verification: to verify communication protocols using system
Model.

> Verification Architecture Pre-Silicon > Emulation > Post-Silicon >
Planning Verification Verification FPGA Prototyping Verification

[CHE 17]
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Verification Life Cycle
3 IP verification team: e e

performs the verification of the IP.

The objective is to ensure that the IP on its own Bif;?{:;ks'vzﬂ.‘:;’e'

functions as expected. Logic Synthesis

‘ Gate-level Netlist

—
T

| GDSII Layout

02

Manufacturing |

Functional Verification

Timing Verification
Power Verification

> Verification > Architecture Pre-Silicon Emulation > Post-Silicon >
Planning Verification Verification FPGA Prototyping Verification

[CHE 17] [KNE 20]
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Verification Life Cycle

4 [P verification team: SR
performs the verification of the IP.
The objective is to ensure that the IP on its own Bi?‘;z‘f;km‘:;’e' s |
functions as expected. “emen 1 RN
Q SoC team: | eeiewel et -
Integrates the IPs into an (evolving) SoC model — P smiess ] LI
Perform system-level verification. " I
Manufacturing

> Verification > Architecture Pre-Silicon Emulation > Post-Silicon >
Planning Verification Verification FPGA Prototyping Verification

[CHE 17] [KNE 20]
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Verification Life Cycle

D Sh . k 2 f t t (" Supply Chain System Model
rln In Verl ICa Ion Ime Management e.g. SystemC
g High-level Synthesis
Behavioral Model
l l ili Technology Libra e
A Limited tool scalability

Functional Verification
Power Verification

there has been a growing trend in formal
methods to target specific applications
(e.g., security, deadlock, etc.) rather than
a complete proof of functional

correctness
3 Specification capture

Timing Verification

A key challenge in the applicability of verification today is the
lack of specifications

1 Power management challenges (CHE 17] [KNE 20]
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Classical EDA Flow
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SystemC model in EDS for Al

- Training of Neural Network for XOR function

- MLP was chosen for its simplicity

- The inference will be run on a SystemC model

- Faults will be injected in different points in the HW (registers)

- Fault propagation behavior will be shown
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SystemC model in EDS for Al

> Neural network will be trained for XOR gate. A E B
> (ate input/output have a 4-bit precision each. 0 0 0 o 1 o 0 0 0 0 0 0 0
> Dataset contains 24x24 = 256 samples. 0 0 0 0 I 0 0 0 1 0 0 0 1
> Training was done in Keras/TensorFlow. 0 0 0 0 i 0 0 1 0 0 0 1 0
Y 1 1 1 1 i 1 1 1 1 0 0 0 0
B

18.11.2021 IM FOCUS DAS LEBEN



KI-PRO

> The chosen architecture is 2 neurons at the input with

Input layer: Hidden layers: output layer:
256;128 neurons 4 neurons

\V/ its
4 bits “ H‘}%'ﬁ{ \\\‘ 1 it

A
""“( $\ ‘ 1 bits
\ \

WK
()
V‘Y
the Neural Network is doing a specific XOR logic on a tiny dataset. 4 bits ‘/ /

Each weight is a 32-bit floats

two hidden layers of 256 and 128 neurons and 4 output neurons.

> Rectified Liner (ReLu) as activation function for hidden layers.

> Sigmoid as activation function for output layer.

> Data set not divided into training/test batches because

= Overfitting is not a problem for this example.
> Weights are extracted on 32-bit floats
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SystemC model in EDS for Al: Model architecture

W1

. ——
> Inference was done in SystemC. I / @,@l
> X L O1

> A hardware engine for matrix multiplication is implemented.

> Weights and biases are extracted from the trained model Wn ' ' E"On
— LGo-co -

Processing engine
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L1 L2 L3

Processing
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Processing
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Fault injection

Weights are represented on 32-bit floats.
Faults were injected in random weights at different layers.

Every time one single fault is injected.

Yy Y VvV Y

For one weight, a single fault (one bit-flip) is injected, going from LSB to MSB.

Initial register value: Free Fault 0 1 0 1 1 1 . 0 1

Injection of fault in the first

b S I I I N IR I I-

Injection of fault in the -:
. 0 1 0 1 1 1 1

second bit Tt |

Injection of fault in the last . :
bit 1 0 1 1 1 . 0 1

o
-

v

32-bit wide registers
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Fault injection

y v vV Y

Number of output errors for the whole dataset

Injecting faults in the LSB does not lead to errors in the output, the faults are masked.

Faults injected in the MSB propagate and affect the behavior of the SystemC model.

Faults injected near the output (at the last layer) are masked.

The masking effect is present because the weights are float values with 32-bit precision
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Kl-Pro Platform

> RISC-V core based on the RISC-V VP.
> RRAM-based Al accelerator.

> NVIDIA Deep Learning Accelerator as a Machine Learning accelerator

Machine Learning RISC-V Processor RRAM-based
accelerator accelerator
FT control

Management

Processing

Processing

acceleration acceleration

Processing

KI-PRO
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KlI-Pro: SystemC Model

The simulation platform uses
transaction-based modelling
(SystemC/TLM2.0) to
achieve the adaptation and
interfacing of the different
components

KI-PRO

IRQ

CSB

PLIC-based
interrupt controller

NVDLA core

DBBIF

RRAM Module

TLM
2.0
BUS

Main
Memory
(DRAM)

RISC-V virtual platform
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