

Characterization of SET Effects in Electronic Integrated Circuits and Systems

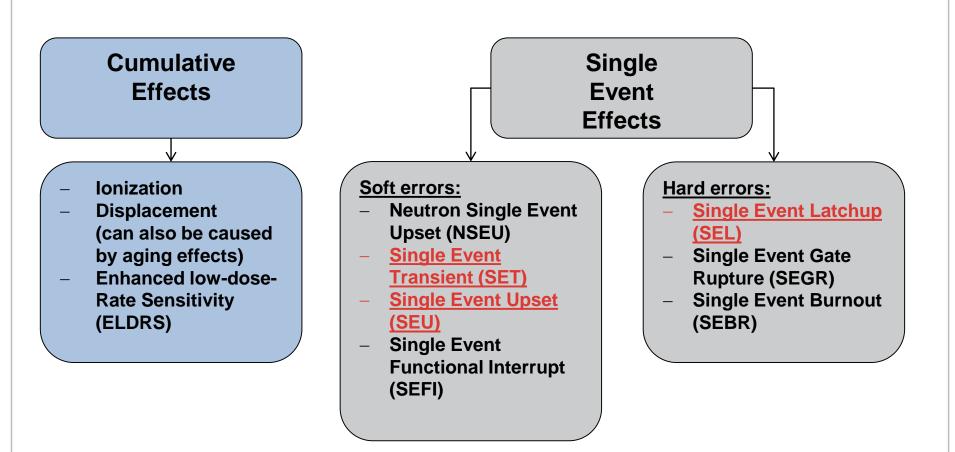
Marko Andjelkovic and Zoran Stamenkovic

ibp

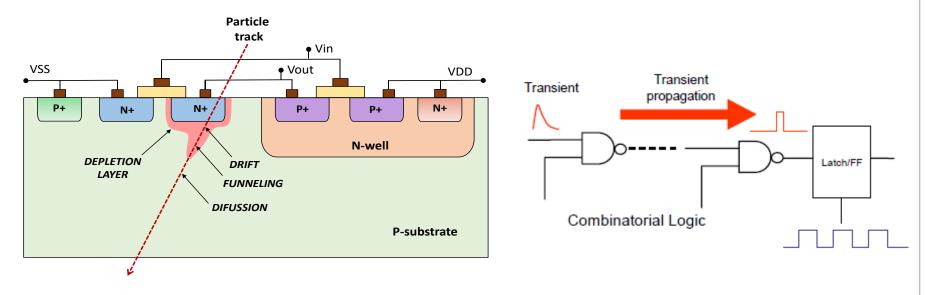
innovations for high performance microelectronics

Member of Leibniz Association

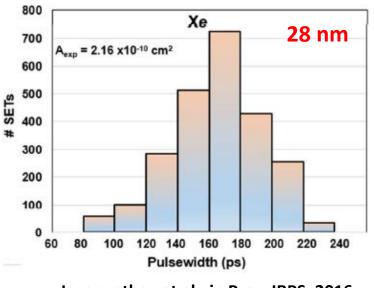
17.11 - 18.11.2021


3rd ELICSIR Workshop - Fault-tolerant Electronics for Radiation Environments

Outline


1	SET Characterization
2	Target Circuit
3	Pulse Stretcher
4	Delay and Capture Module
5	External Processing Unit
6	Performance Analysis
7	Implementation Details

- Single event transients (SETs) are one of the major reliability issues for nanoscale integrated circuits operating in radiation environment
- SET is induced by the interaction of a high energy ionizing particle with a sensitive transistors in a combinational circuit

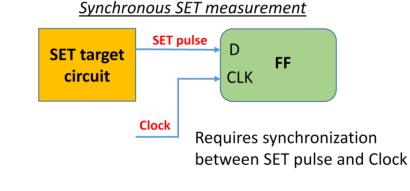


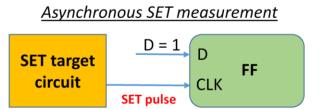
- SET is manifested as a voltage pulse at the output of a combinational gate
- If latched by a sequential element, SET can be transformed into a Single Event Upset (SEU), potentially resulting in data corruption

SET Pulse Width

- Due to random strike locations, it is not possible to obtain exact SET pulse values
- A distribution of SET pulse widths can be obtained for a given particle energy
- SET pulse width decreases with technology scaling
 - But propagation delay also decreases, increasing the probability of SET propagation

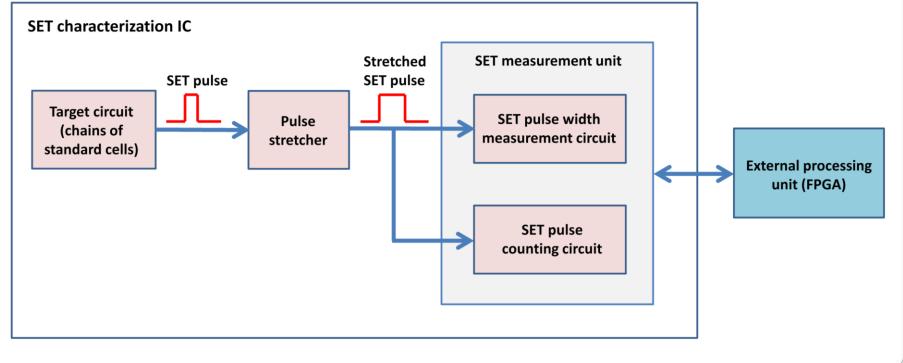
Technology node	Reference	Maximum SET width at LET = 60 MeVcm ² mg ⁻¹	Average SET width at LET = 60 MeVcm ² mg ⁻¹
250 nm	Benedetto et al.	1.5 ns	n/a
180 nm	Benedetto et al.	1.5 ns	n/a
130 nm	Benedetto et al.	2.7 ns	n/a
130 1111	Narasimhan et al.	1.4 ns	650 ps
90 nm	Narasimhan et al.	1.4 ns	750 ps
65 nm	Gadlage et al.	200 ps	120 ps
05 mm	Jagannathan et al.	250 ps	175 ps
28 nm	Jagannathan et al.	230 ps	165 ps




Jagannathan et al., in Proc. IRPS, 2016

SET Pulse Width Characterization

- Characterization of the SET pulse width in standard cells is essential for evaluating the radiation-hardness of a given standard cell library (technology)
- SET pulse width is characterized by exposing a target circuit (composed of standard cells) to heavy ion irradiation
- SET pulses generated in the target circuit are measured with a customized processing logic integrated on the same chip with the target circuit
- Two SET measurement approaches
 - Synchronous (requires relatively complex synchronization circuitry)
 - Asynchronous (simpler design) adopted in this work

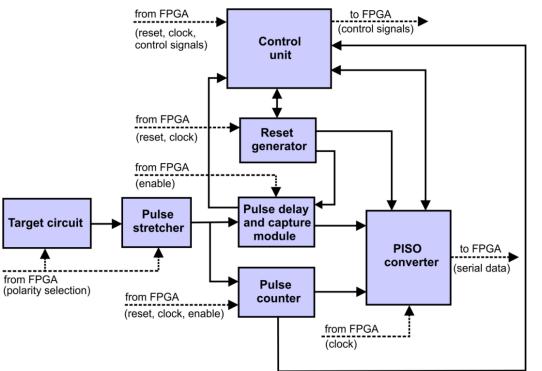


Requires reset after every detected SET pulse

www.ihp-microelectronics.com | © 2021- All rights reserved

Hardware for SET Characterization (1)

- Main goals of SET characterization in standard cells
 - Detection of SET pulses in standard cells
 - Measurement of SET pulse width
 - Counting of the detected SETs

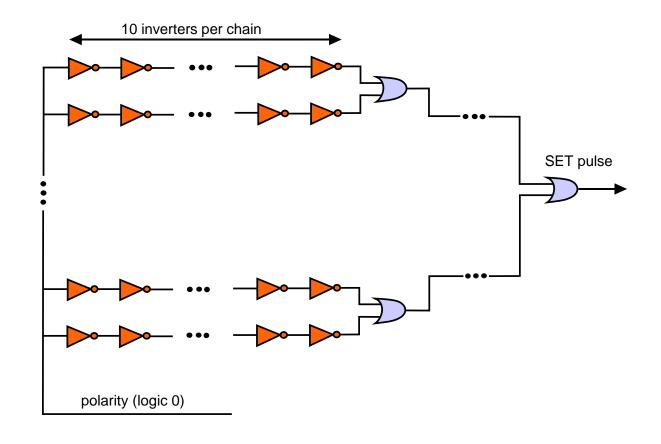

7

www.ihp-microelectronics.com | © 2021- All rights reserved

Hardware for SET Characterization (2)

- The SET pulse width measurement circuit is composed of 3 main functional units:
 - > Target circuit (SET detector)
 - Pulse stretcher
 - Processing unit
- Supports the measurement of SET pulse widths from 0.1 ns to 3.5 ns
- Collected data is transferred to an external processing unit (FPGA)
- External processing unit provides the necessary control signals for SET pulse width measurement

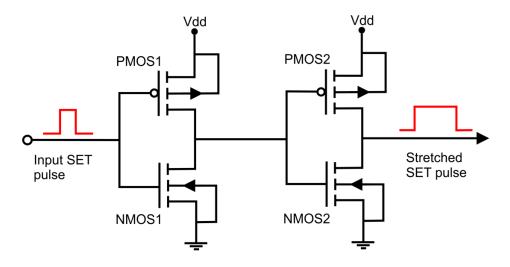
Target Circuit (1)



- Target circuit acts as a SET detector
- When hit by a radiation particle, the target circuit generates a voltage pulse at its output
- Target circuit is made of standard logic gates, usually inverters
- Key design requirements for the target circuit
 - To secure significant detection area, the target circuit should be realized in the form of logic gate chains
 - To reduce the propagation-induced pulse broadening, the inverter chains should be as short as possible
- Propagation-induced pulse broadening depends on technology and path composition
 - Extensive simulations are necessary to identify the optimal conditions for achieving minimum pulse broadening

Target Circuit (2)

- The target circuit is composed of 20480 inverters
- Inverters are arranged as 10-inverter chains interconnected by OR gates
- External signal is used to define the polarity of output SET pulse


Gate	Gate area (µm²)	Number of gates	Area of target circuit (μm²)
INJILTX1	3.78	40960 (20 per chain x 2048 chains)	154829
INJILTX2	5.67	30720 (15 per chain x 2048 chains)	174182
INJILTX4	9.45	20480 (10 per chain x 2048 chains)	193536
INJILTX8	15.12	12288 (6 per chain x 2048 chains)	185795

Area of OR tree is 9.5 x 2047 = 19446 μ m² (around 20% of target circuit)

Pulse Stretcher (1)

- To measure short SET pulses (< 200 ps), the pulses from the target circuit are stretched by 500 ps
- A pulse stretcher based on two asymmetrically sized inverters is used

- Pulse stretcher provides a fixed stretching independently of the input pulse width
- Pulse stretching is determined by
 - > Sizing ratio of the two-inverter stretcher
 - > Number of cascaded two-inverter stretchers

Criteria for transistor sizing for a positive pulse stretcher

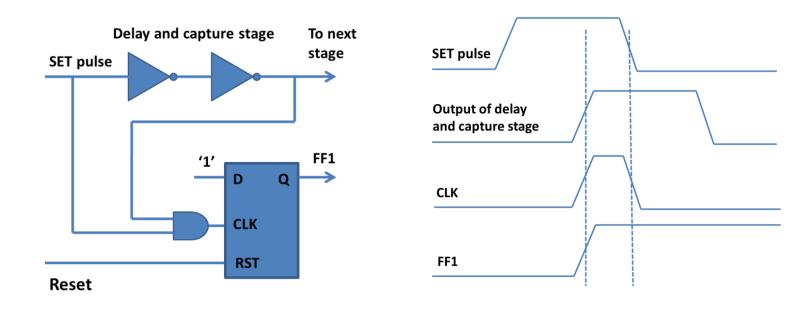
 $W_{NMOS1} > W_{PMOS1}$ $W_{PMOS2} > W_{NMOS2}$ $W_{NMOS1} = W_{PMOS2}$ $W_{PMOS1} = W_{NMOS2}$

Relation between input and output pulse widths

 $T_{OUT} = T_{IN} + \Delta T$

Pulse stretching

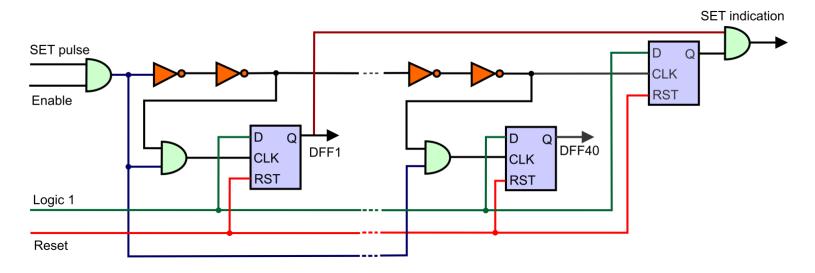
 $\Delta T = k \cdot S$


Sizing factor of pulse stretcher

 $S = W_{NMOS1}/W_{PMOS1} = W_{PMOS2}/W_{NMOS2}$

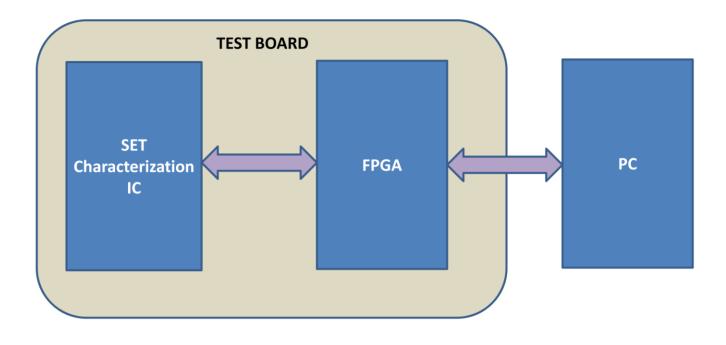
ihp

Delay and Capture Module (1)

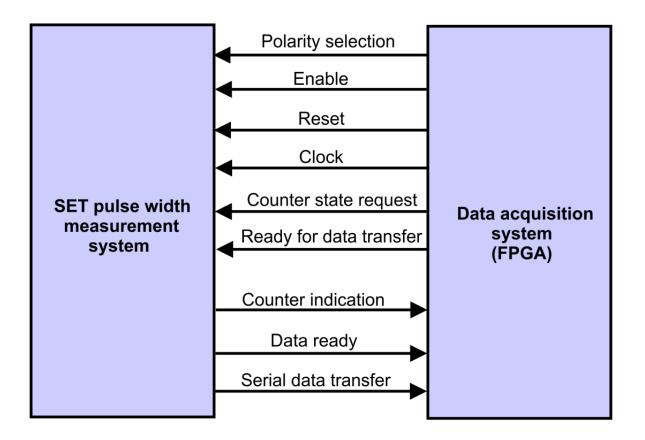

- Delay and capture module measures the width of the stretched SET pulse
- It is composed of cascaded delay inverters and capturing D flip-flops
- SET pulse width is proportional to the number of delay and capture units through which the pulses pass, i.e. number of triggered flip-flops
- Setting the flip-flops' data input D to the high level (logic 1) eliminates the need for additional synchronization circuitry

ihp

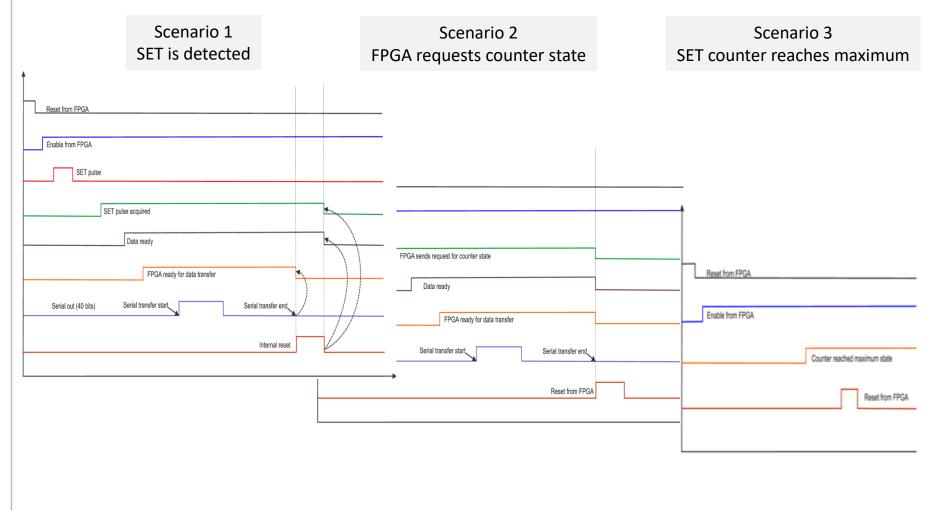
Delay and Capture Module (2)


- Delay and capture module is based on serial filtering approach, which employs fewer elements than parallel filtering approach
- Delay and capture module generates a 40-bit sequence equivalent to the SET pulse width
 - Generated sequence is in the form "11100...0"
 - SETs generated in the delay and capture module can be easily identified
- Measurement resolution is approx. 90 ps (total delay of two inverters with minimum driving strength in IHP's 250 nm bulk CMOS technology)

External Processing Unit (1)


- External processing unit is implemented on an FPGA
- FPGA transfers the acquired data (SET pulse width and number of detected SETs) to a PC
- FPGA provides the clock, reset and control signals for the SET pulse width measurement hardware

External Processing Unit (2)


- Data is transferred serially, in 44-bit packets (4-bit preamble + 40-bit data)
- Communication between the SET pulse width measurement hardware and the external data acquisition unit (FPGA) is defined by a handshaking protocol

External Processing Unit (3)

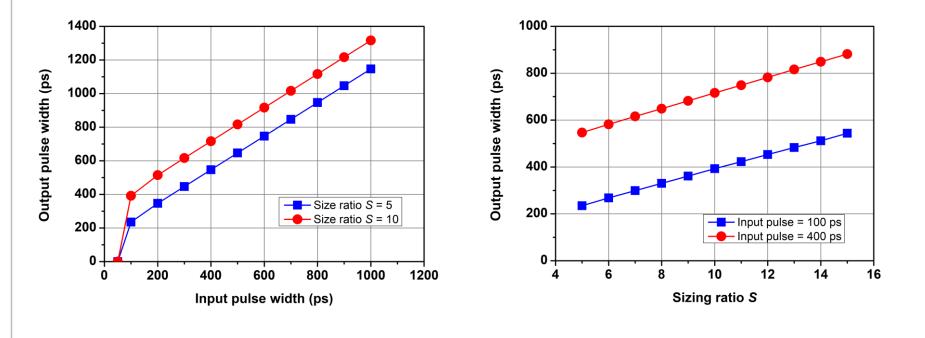
Implemented protocol supports 3 typical scenarios which can occur under real irradiation conditions

10-inverter chains

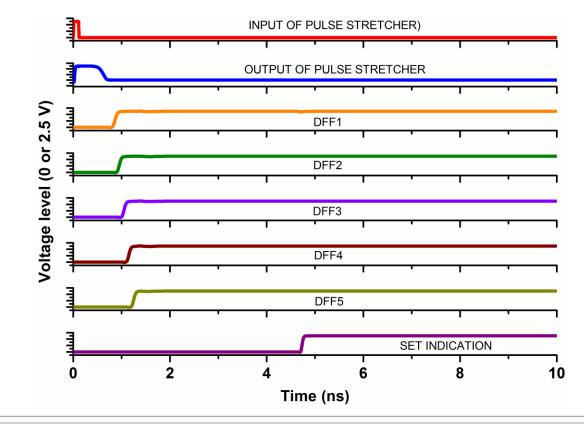
Performance Analysis (1)

Current (mA) 1.5 1.0 0.5 SET CURRENT PULSE OR 0.0 1.0 Voltage (V) 0.5 SET pulse INPUT OF TARGET INVERTER 0.0 OR -0.5 -1.0 Voltage (V) OR OUTPUT OF TARGET INVERTER Voltage (V) OUTPUT OF TARGET CIRCUIT **Pulse current source** to model the SET 2 3 Time (ns)

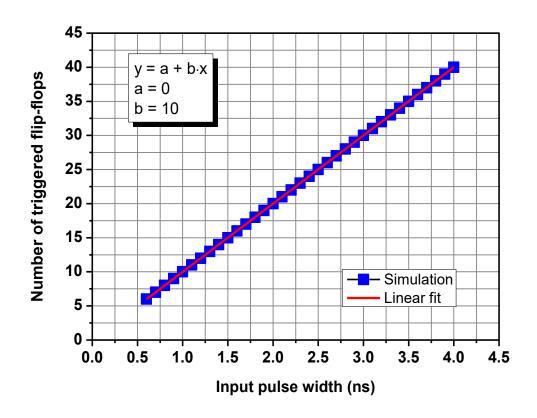
To evaluate the operation of target circuit, a double exponential current pulse


- is injected at the output of target inverters
- The shape of the pulse at the output of target circuit is close to rectangular
- Minimum pulse broadening was noticed (due to OR gates)

Performance Analysis (2)

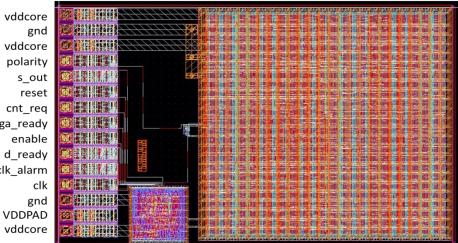

- To evaluate the performance of pulse stretcher, the relation between input and output pulse width in terms of sizing ratio was analyzed
- Pulse stretching is independent of input pulse width
- Output pulse width increases linearly with the sizing factor (transistor size) of pulse stretcher

Performance Analysis (3)


- To evaluate the performance of the pulse stretcher and delay and capture module, a rectangular voltage pulse was injected at the input of pulse stretcher
- If at least one flip-flop in the delay and capture module is triggered, an SET indication signal will be issued

Performance Analysis (4)

- The number of triggered flip-flops in delay and capture module is linearly dependent on the input pulse width
- Since every pulse is stretched by 500 *ps*, it is possible to detect and measure effective pulse widths from 0.1 ns to 3.5 ns


Implementation Details

.....

Parameter	Value	
Technology	IHP 250 nm	
Chip area	3.5 mm ²	
No. of pads	15	
Clock freq.	50 MHz	
$\operatorname{Core} V_{\rm DD}$	2.5 V	
I/O V _{DD}	3.3 V	
Current	20.32 mA	
Die thickness	300 µm	

vddcore polarity s_out reset cnt_req fpga_ready enable d_ready clk_alarm VDDPAD vddcore

Thank you for your attention!

Stamenkovic, Zoran

IHP – Innovations for High Performance Microelectronics Im Technologiepark 25 15236 Frankfurt (Oder) Germany Phone: +49 (0) 335 5625 726 Fax: +49 (0) 335 5625 671 Email: stamenkovic@ihp-microelectronics.com

www.ihp-microelectronics.com

innovations for high performance microelectronics

