
Tatjana Nikolic
Faculty of Electronic Engineering, University of Nis, Serbia

 Fault-tolerant systems

 Fault-tolerant design

 Redundancy

 Coding

 Fault-tolerant communication

 No matter how robust the design is, 100% fault free design is impossible
◦ there is not a single large piece of software or hardware that is free of bugs
◦ space shuttles have flown with potentially serious bugs

 The challenge of designing complex systems
◦ techniques to reduce the number of faults

 Systems
◦ recognize the existence of faults
◦ incorporate techniques to tolerate these faults

 Fault-tolerant (FT) systems
◦ to achieve the needed reliability and availability
◦ to tolerate faults by detecting failures
◦ to isolate defect modules (the rest of the system can operate correctly)

 Design of complex SoC:
◦  IP cores/chips functionality
◦ - efficient data transfer with reduced number of wires
◦  power consumption
◦ enhancing reliability with as low as possible area and time overhead

 SoCs - focused on the computational aspects
shrinking technology and growing complexity
◦ high performance, reliable interconnection architecture

 To increase system reliability
◦ two aspects of the design

computation-based communication-based

 Applications that require FT:
◦ Critical Application: Aircraft, Nuclear reactor, Medical equipment

◦ High Computing Systems: Complex systems with a million devices

◦ Harsh Environment: Systems open to high vibration, temperature, humidity,
electromagnetic disturbances, particle hits

 Computers in aerospace systems - a prime example
◦ life-critical - passengers or astronauts

◦ must operate fault-free for many hours (space missions)

◦ high altitude aircraft - in harsh environments

 The Sun - major and highly variable — source of particles

 Airplanes - low rate of particle hits - conventional FT

 Spacecraft - higher levels of radiation - more extensive protection

◦ big-budget items - considerable costs of FT

 Fault: a representation of a “defect” at the function level
◦ frozen memory bit
◦ stuck-at fault
◦ alpha particle hit or cosmic ray ionization
◦ uninitialized variable in software

 Error: a manifestation of fault; can cause failure
◦ an incorrect result of a calculation
◦ incorrectly transmitted data

 Failure: a system failure (it operates differently from intended)

a
b

c

c = ab

AND

Defect:
a short to ground

Fault:
b stuck-at 0

Error:
a=1, b=1, c = 0

correct output c = 1

 Duration: Hardware faults
◦ Permanent fault - always present after its occurrence

 burned-out lightbulb, broken wire
◦ Transient fault - occurs randomly and only once

 memory cell with contents that are changed spuriously
◦ Intermittent fault – occurs at intervals, irregular; from time to time

 loose electrical connection

 When they were introduced: phases of the system’s
lifetime
◦ design phase
◦ system implementation
◦ system operation due to hardware degradation or harsh

environments
 high levels of radiation
 excessive temperatures

 Technology scaling  increased sensitivity to faults
◦ crosstalk, power supply noise, cosmic rays and alpha particles

 A good FT system design
◦ study of design, failures, causes of failures, system response to failures

MTTF - Mean Time To Failure
MTBF - Mean Time Between Failures
MTTR - Mean Time To Repair

Dependability
a measure of user’s trust into the system

Reliability - R(t)
continuity of correct service
as specified

Availability - A(t)
readiness for correct service
when requested

 Redundancy - the basic principle of FT design
◦ it is incorporated  system can operate correctly in the presence of faults

 Redundancy
◦ having more of a resource than is minimally necessary
◦ masks or works around failures

 Forms of redundancy:
◦ hardware
◦ software
◦ information
◦ time redundancy

 Hardware faults
◦ hardware, information, or time redundancy

 Software faults (bugs)
◦ software redundancy

 Hardware redundancy
◦ incorporating extra hardware

 to detect or override the effects of a failed component

◦ drawback:
 cost of the extra hardware, power consumption

◦ hierarchy:
 system level, multiple modules, individual devices

 Information redundancy
◦ error detection and correction coding:

 extra bits (check bits) are added to the data bits

 Time redundancy
◦ reexecution of the same program on the same hardware

 Software redundancy
◦ execution of different software modules (performing the same functionality)

 Resilient structures with redundant components

 M-of-N system
◦ N modules and a voter

◦ at least M of them for proper operation

◦ Triplex - triple modular redundant (TMR) system

 three identical modules; outputs are voted on

 2-of-3 system: most (2 or 3) modules work correctly

 Duplex system
◦ two hardware modules and a comparator

◦ comparator - module outputs are in agreement

 the result is assumed to be correct

System reliability:

Reliability of module

 Coding - common form
◦ adds check bits to the data

◦ verification of correct data

◦ correction of erroneous data bits, in some cases

 Code - the set of all codewords
◦ d-bit data word –> encoded –> c-bit codeword

◦ 2c binary combinations – valid and invalid codewords

◦ an invalid codeword indicates an error

 The rate of a code – the fraction of bits that are nonredundant - (d/c)

 A separable code – separate fields for data and check bits

 A nonseparable code – data and check bits integrated together

c bits

d bits r bits

data

 Code - detects any single-bit error
◦ four codewords {001, 010, 100, 111} - distance of 2

 Code - detects any single- or double-bit error
◦ codewords {000, 111} - distance of 3

◦ corrects any single-bit error

 if double-bit errors are not likely

Hamming
distance 1

Hamming
distance 2

 Hamming distance - two codewords
◦ the number of different bit positions

 3-bit word space

 to detect up to k bit errors
◦ code distance - at least k+1

 to correct up to k bit errors

◦ code distance - at least 2k+1

 Code distance
◦ minimum Hamming distance

- any two valid codewords

 Parity

 Checksum

 M-of-N

 Berger

 Cyclic codes

D = Data protected by error checking
EDC= Error Detection and Correction bits (redundancy)

• larger EDC field  better detection and correction

 A parity-coded word – d data bits and an extra bit
◦ even or odd parity

 Variations of the basic parity code:
◦ byte-interlaced parity code - a parity bit is assigned to every byte

◦ overlapping parity - the data is organized in a two-dimensional array

single bit parity:
 detect single bit errors

 distance - 2

two-dimensional bit parity:
 detect and correct single bit errors

Encoder

Decoder

▶ Hamming(7,4) code - adds three parity bits to four data bits
▶ Hamming(8,4) single-error correcting/double-error detecting

(SEC/DED)
• to improve the error detection capabilities
• adds an extra check bit

0 0 1 0 1
0 1 1 1 0

1 0 1 0 1
1 1 1 1 0

1
0
1
0

no errors

parity
error

parity
error

0 1 1 1 0 1

1 0 1 0 1 1
1 0 1 1 0 0

0 0 1 0 1 0

detected
and

correctable
single-bit

error:

 Checksum - the basic idea
◦ to add up the blocks of data and to transmit this sum with data

◦ the receiver adds up the data and compares this sum with the checksum it received

 Data words - d bits
◦ (A) Single precision - modulo-2d addition

◦ (B) Double precision - modulo-22d addition

◦ (C) Residue checksum - takes the carry out of the d-th bit as an end-around carry

 M-of-N code - unidirectional error-detecting code
◦ Unidirectional errors - all the affected bits change in the same

direction (0 → 1 or 1 → 0)

 M-of-N code
◦ N-bit codeword - M bits are 1

 Any single-bit error will be detected
◦ changes the number of 1s - to M+1 or M−1

2-of-5 code

 Berger code - a unidirectional error detecting code
◦ separable

 For d data bits - log2(d+1) check bits

 Encoding process
◦ count the number of 1s in the data word
◦ express this count in binary representation
◦ complement it
◦ append this quantity to the data

 Example: to encode 11101
◦ there are four 1s in it,
◦ it is 100 in binary
◦ complementing results in 011
◦ the codeword will be 11101011

 Encoding
◦ multiplying (modulo-2) the data word by a constant number:
◦ the coded word is the product

 Decoding
◦ dividing by the same constant:
◦ if the remainder is nonzero, an error has occurred

 Cyclic codes
◦ codeword an−1, an−2, . . . , a0 - its cyclic shift a0, an−1, an−2, . . . , a1 is also a codeword
◦ Example: {00000, 00011, 00110, 01100, 11000, 10001, 00101, 01010, 10100,

01001, 10010, 01111, 11110, 11101, 11011, 10111}

 Example: Encoding the data word 10001100101 by multiplying with
11001 and decoding by dividing
◦ Codeword: 110000100011101

 Detection of an fault - first step in FT systems

 Concurrent (on-line, implicit) error detection, CED
◦ circuit level technique - during system operation

 CED is focused on mission critical systems
◦ high levels of reliability

◦ the cost is of less importance

 Objective of CED:
◦ detection of errors as early as possible

 Self-checking, SC - hardware failure detection
◦ the ability to verify on-line whether there is any faults

◦ allows faults to be detected, preventing data contamination

 Techniques for designing SC circuits:
◦ duplication with comparison

◦ use of error detecting codes

 Duplication with comparison
◦ CED based on hardware redundancy

 Design
◦ two identical copies of a circuit compute the results
◦ the comparator examines the identity property between

their outputs and flags error

 Self-checking circuit
◦ Functional block (Function circuit & Check bit generator) - produces encoded outputs

◦ Checker - monitors the output and signals the appearances of a noncode word

 Error detecting codes, EDC
◦ introduce redundancy in information representation

◦ improve the data integrity of the Function circuit

 implementing a block which predicts some characteristic

 12 combinational circuits of standard architecture

 the insertion of CED in VHDL RTL description

 a synthesis tool to implement the SC into FPGA

12 circuits orig dup Ber pg1 pg2 pg4

A
V
E
R
A
G
E

area
overhead

(%)
0 157 251.1 77.3 119.6 90.9

speed
decrease

(%)
0 61.9 69.3 19.1 38.6 32.6

A parity check scheme is superior one
- least amount of average area overhead and speed decrease

 Partial function checking
◦ compromise: hardware overhead (<100%) and error-detecting (<100%, >90%)

◦ duplicated function module & m-bit comparator  function checker, FC

 The FC implements characteristic function, F, of the original function f
◦ F(X,Y)=0 if Y=f(X), and F(X,Y)=1 if Y≠f(X)

 Partial function checker (PFC) implements function F*(X,Y)
◦ F* under-approximates F - if F*(X,Y) agrees with F(X,Y) when F(X,Y)=0

◦ F*(X,Y) - arbitrary selected when F(X,Y)=1 - to reduce the complexity of F*

.

.

.

- DFM -

Duplicated

function module

f(X)

- OFM -

Original

function module

f(X)

.

.

.
.
.
.

x1

xn

X

y1

ym

.

.

.

Y

Error

indication

f1

fm
- MBC -

.

.

.

- OFM -

Original

function module

f(X)

- FC -

Function

checker

F(X,Y)

n
X

m

n m

Y

Error

indication

YX

 Challenge - algorithms
◦ good under-approximations of the F with minimal cost

 Truth table – 2-input 2-output function
◦ characteristic function - F

◦ two under-approximation functions – F1*, F2*

0 0 1 0

0 1 0 0

1 0 0 1

1 1 1 0

x1 x2 y1 y2

f: y1 = x1'x2' + x1x2

 y2 = x1x2'

0 0 0 0 1 1 1

0 0 0 1 1 1 1

0 0 1 0 0 0 0

0 0 1 1 1 1 1

0 1 0 0 0 0 0

0 1 0 1 1 1 1

0 1 1 0 1 0 0

0 1 1 1 1 1 1

1 0 0 0 1 1 0

1 0 0 1 0 0 0

1 0 1 0 1 0 0

1 0 1 1 1 1 1

1 1 0 0 1 1 0

1 1 0 1 1 1 1

1 1 1 0 0 0 0

1 1 1 1 1 1 1

x1 x2 y1 y2 F F1* F2*

1 1

1

1

1 1

1 1

1

1

1 1

00 01 11 10

00

01

11

10

x1x2

y1y2

F = x1x2
'y2

' + x1
'x2 + x1x2y1

' +

 + x2
'y1

'y2
' + y1y2 + x2

'y1y2

(cv=1.00, 6 prod. terms/16 literals)

1 1

1

1

1

1 1

1

1

1

00 01 11 10

00

01

11

10

x1x2

y1y2

F1
* = x2

'y1
'y2

' + x1
'y2 + x1x2y1

' + y1y2

(cv=0.83, 4 prod. terms/10 literals)

1 1

1

1

1

1 1

1

00 01 11 10

00

01

11

10

x1x2

y1y2

F2
* = x1

'x2
'y1

' + x2y2 + y1y2

(cv=0.75, 3 prod. terms/7 literals)

 A set of benchmark circuits – to demonstrate the efficiency of the PSC

The trade-off between the conflicting objectives
low hardware overhead
high error coverage

Circuit (f)
Characteristic
function - F

Approximated characteristic function - F*

cv=1.0 cv=0.99 cv=0.98 cv=0.95 cv=0.90 cv=0.85

Average
overhead (%)

184 102 86.8 68.1 49.6 40.2

 Interconnection architecture - high performance and reliable
◦ complexity of the contemporary SoC

 Large number of wires for faster communication:
◦ interconnections - dominant source of energy consumption
◦ reliability decreases

 susceptible to noise sources, crosstalk, radiation

 Interconnects - unreliable medium
◦ due to faults

 Design of SoC interconnection architectures

Fault tolerance mechanisms for improving
communication reliability

 Coding in interconnections
◦ technology independent solution
◦ optimization of interconnect design

 energy efficiency, speed, reliability

 CED interconnect scheme - preserves fault-secure
◦ produces correct output
◦ indicates erroneous situations

 Interconnect networks – shared bus - TDMA, CDMA

 CDMA: Code Division Multiplexed Access
 sharing medium based on the use of orthogonal codes

◦ to separate simultaneously transmitting channels

 CDMA technique - SoC
◦ efficient (high-bandwidth) communication protocol

 Spread spectrum technique
◦ unique “code” assigned to each user

 “chipping” sequence (code) to encode data

◦ multiple users “coexist” and transmit simultaneously
 minimal interference

◦ encoded signal = (original data) X (chipping sequence)
◦ sum-chips = summed chips of the same weight (encoded signals)
◦ decoding = (sum chips) X (chipping sequence)

 Spreading data by CDMA
◦ fault tolerant mechanism - information redundancy

◦ expands data bandwidth

 allows data recovery

 improves the reliability in spite of a few spreading bits loss

 a bit-error (in the sum-chip), can be masked by the rest, correct sum-chips

using same code as
sender 1, receiver
recovers sender 1’s
original data from
summed channel data!

Sender 1

Sender 2

channel sums together
transmissions by
sender 1 and 2

n senders

+1 wires2log n  

 LCDMA - Logic CDMA
◦ several blocks send data simultaneously over a single wire - efficiently

◦ limited error correcting capability

 LCDMA and hardware redundancy (duplication, triplex)
◦ efficient and fault-tolerant data transmission

◦ to trade off the reliability and cost of interconnect

XOR1D1

SC1

XORnDn

SCn

.
.
.

D10

1

Dn0

1

.
.
.

SCn

SC1

. . .

Transmitter

side

. . .

LCDMA encoder

Receiver

side

. . .

connection

wire

LCDMA decoder

LCDMA interconnect

SD1

SDn

ADD
TO

ADD1

ADDn

DB1

DBn

TR1

TRn

.
.
.

.
.
.

RC1

RCn

RI

SA1

SAn

LD1

LDn

𝐷𝑖 = 𝑀𝑆𝐵 𝑆𝐴𝑖
𝑇𝑂 𝑗 = 𝑀𝑆𝐵

𝑖=1

𝑛

𝑆𝐷𝑖 𝑗

TO(j) - the most significant bit of a sum
for each of m generated sum-chips

The ADD sums up chips
of the same weight

Di - output bit, the
sign of the value at
the adder output

 LCDMA-DLC - Logic CDMA and Duplication with Logic Comparison
◦ further enhances the system ability to tolerate errors

 LCDMA-TSV - Logic CDMA and Triplication with Sign Voter

D1

Dn

T
ra

n
s
m

.
s
id

e

. . .

LCDMA

encoder
. . .

connection

wire 1

LCDMA

decoder

. . .

D1

DnD
u

p
lic

a
te

d

tr
a

n
s
m

.
s
id

e

. . .

DuplicatedL

CDMA

encoder

. . .

connection

wire 2

Duplicated

LCDMA

decoder

. . .

SA1(o)

SAn(o)

. . .

SA1(d)

SAn(d)

. . .

D1

Dn

Receiver

side

. . .

LC1

LCn

. . .

RC1

RCn

TR1

TRn

TR1

TRn

D1

Dn

T
ra

n
s
m

.
s
id

e

. . .
LCDMA

encoder
. . .

connection

wire 1

LCDMA

decoder

. . .

D1

DnD
u

p
lic

a
te

d

tr
a

n
s
m

.
s
id

e

. . .

Duplicated

LCDMA

encoder

. . .

connection

wire 2

Duplicated

LCDMA

decoder

. . .
SA1(o)

Receiver

side

. . .

RC1

RCn

TR1

TRn

TR1

TRn

D1

DnT
ri
p

lic
a

te
d

tr
a

n
s
m

.
s
id

e

. . .

Triplicated

LCDMA

encoder

. . .

connection

wire 3

Triplicated

LCDMA

decoder

. . .

TR1

TRn

SAn(o)

SA1(d)

SAn(d)

SA1(t)

SAn(t)

SV1

SVn

. . .

D1

Dn

. . .
. . .

. . .

𝐷𝑖 = 𝑀𝑆𝐵 𝑆𝐴𝑖 𝑜 + 𝑆𝐴𝑖 𝑑 𝐷𝑖 = 𝑀𝑆𝐵 𝑆𝐴𝑖 𝑜 + 𝑆𝐴𝑖 𝑑 + 𝑆𝐴𝑖 𝑡

 MATLAB simulation results for 8- and 16-bit spreading code lengths

 BER performance - Logic CDMA and triplication with sign voter

 The conventional binary CDMA bus
◦ moderate fault tolerance - inadequate encoding of the sum-chips
◦ signed binary numbers in two’s complement representation

 Weighted binary encoding - not suited to CDMA
◦ a bit-error at the two most significant bits

 can cause a sign change in the sum of sum-chips
 cannot be masked by the rest, correct sum-chips

 Non-weighted encoding scheme
◦ inbuilt information redundancy

 instead of hardware redundancy
◦ the capability of tolerating a single-bit error

 without extra wires

 Non-weighted encoding – low-cost FT scheme
◦ improves bit error rate performance of the binary CDMA bus

E D

000 001 010 011 100 101 110 111

-4 -2 0 2 4

line codewords (set V)

sum-chips (set C)

If due to single-bit error, codeword vi is changed to vj, then
the sum of the sum-chip values will have the same sign

 Computers in aerospace systems
◦ a prime example of designs that must support fault tolerance

 Radiation
◦ prominent cause of hardware failure

 Combination: coding and hardware redundancy
◦ effective fault tolerance

