

MORAL - Export-free Rad-hard Microcontroller for Space Applications

H2020 Programme Space Theme

Felipe A. Kuentzer

November 17th, 2021 ELICSIR Workshop

GAbsInt

EMBEDDING INNOVATIONS

European Commission

Agenda

- Background
- MORAL Project Introduction
- MORAL Microcontroller
 - PEAKTOP
 - MORAL Chip
- Radiation Hardening Techniques
 - Fault Tolerant Design Flow
- Project Developments Overview

Background

Small satellites - 2030 and beyond

- Low-cost small satellites (from 10 kg to 500 kg)
 - Potential for scientific research and practical applications
- Small satellite modern applications
 - Satellite swarms or constellations replacing large satellites
 - Augmented satellite based navigation systems
 - Satellites in commercial aviation
 - Commercial satellite imagery based services
 - Robotic servicing technologies for space applications
- Mainly powered by traditional electronics
 - Increased capabilities, but reduced reliability

Introduction

MORAL Project – H2020 Space Theme Programme

- Duration from 01. January 2020 to 30. April 2023 (40 months)
 - Funded by the EC GA No. 870365
- Two main objectives
 - Develop a completely European, ITAR-free microcontroller for space applications
 - Exploitation plan for entering the market
- 5 partners

Introduction

MORAL in a nutshell

- Microcontroller based on the novel PEAKTOP architecture, including a novel Instruction Set Architecture (ISA)
- Formally-verified C compiler, RTOS, and toolchain
- Demonstrator board
- Irradiation tests
- Aggressive exploitation plan for bringing the product into market

Introduction

MORAL work overview

MORAL Microcontroller - PEAKTOP

Why a new processor core architecture?

- Processors currently used by the European Space Agency (ESA)
 - 32-bit LEON
 - 32-bit Arm Cortex
- LEON processors are based on the old SPARC architecture
 - Not scalable (e.g., to 64-bit)
 - Register windows that increase chip size or impose small code density
- ARM processor IP
 - Not freely available
 - Basic architectural reliability features
 - TMR (Triple-Modular Redundancy)
 - ECC (Error Correction Codes) for the memory blocks

MORAL Microcontroller - PEAKTOP

Why a new processor core architecture?

RISC-V?

- There was no reference implementation which could guarantees full verification
- PEAKTOP provides effectively the mixed criticality support
 - Multiple functions with different criticalities and assurance levels to co-exist in the microcontroller architecture
 - General Purpose Register (GPR) banks can be dynamically grouped
 - Dual-, Triple- or Quadruple-Modular Redundant (DMR/TMR/QMR) module to increase the fault tolerance

	Radiation hardness	Mixed criticality	Price	ITAR-free	Wide acceptance
ARM	+	-	-	-	+
LEON	+	-	+	+/-	+
RISC-V	-	-	+	+	+
PEAKTOP	+	+	+	+	-

Basic criteria for space microcontrollers

PEAKTOP Architecture

- IHP's own processor
 - Developed, implemented and tested in IHP 130nm technology
- Core architecture characteristics
 - RISC architecture
 - Up to 64 GPR
 - IEEE 754 compliant Floating Point Unit (FPU)
 - Optional Digital Signal Processing (DSP) extension
 - New ISA is fully **orthogonal**, **regular**, and **circular**
 - Multiprocessing support (cache coherence, synchronization support, atomic transfers)
 - Configurable addressing space: up to 64-bit; virtual address space is up to 128-bits
 - 32-bit wide instructions up to 3 operands
 - 2-level Memory Protection Unit (MPU), or (optionally) 2-level Memory Management Unit (MMU)
 - Optional L1 (separate data/instruction) cache, and L2 cache

PEAKTOP Toolchain

- Open source toolchain
 - Multiprocessor Debugger
 - Instruction Set Simulator
 - Complete ISA and tools documentation

https://www.moral-project.eu/publication_open_source.html

MORAL Microcontroller

MORAL Microcontroller

- 256/512 Kbyte SRAM
 - Error Detection and Correction (EDAC) protection unit
- 1 x Interrupt Controller
 - 32 interrupt lines
- 6 x Timers
 - 2x system + 4x user timers
- 64 x GPIO ports
 - Shared with internal peripherals I/Os

PROM, FLASH, SRAM, SDRAM

MORAL Microcontroller

- Peripherals
 - 1 x 8-channel 12-bit ADC module
 - 2 x 12-bit DAC modules
 - 2 x CAN 2.0 modules
 - 4 x UART interfaces
 - 2 x SPI interfaces
 - 2 x SpaceWire interfaces (incl. RMAP protocol)
 - 1 x MIL-STD 1553C bus interface (incl. redundant bus)
 - 2 x I2C interfaces
 - 1 x 8-channel PWM generator
 - 4 x Pulse counters
 - 1 x Watchdog timer
 - Rad-Hard Specification
 - Total ionizing dose (TID) 100 krad (Si)
 - Single event upset (SEU) for the processor's digital core >30 MeVcm²/mg
 - Single event latch-up (SEL) >60 MeVcm²/mg

Radiation Hardening Techniques

- Hardening silicon devices towards radiation
 - Radiation Hardening by Process (RHBP)
 - Radiation Hardening by Design (RHBD)
- RHBP falls under large silicon foundries efforts
 - Cost of developing new RHBP technology nodes became prohibitively expensive
 - RHBD is considerably less expensive
- In both RHBP and RHBD approaches radiation cannot be avoided
 - Solution is to mitigate the effects
- MORAL rad-hard methodology focus only on RHBD
 - IHP 130nm technology process

Radiation Hardening Techniques

Fault Tolerant Digital Flow

- Establishing a RHBD Flow for a digital ASIC means working at all levels
 - From the layout of the single logic port up to the RTL code
- Balance between RHBD techniques and area/power consumption is the most critical part of the design

Design at architectural level

- Fault tolerant behavioral design
- State machines without forbidden states
- Strong EDAC strategy (Hsiao)
- Hardened register files (TMR)
- Strong clock tree strategy

Design at circuit level

- Fault tolerant circuit design
- Hardened standard cell libraries
- Hardened internal SRAMs
- Hardened analog blocks

Design at layout level

- ELT and EGR
- Strong Power/Ground Strategy
- Hardened I/Os
- Wise placement and routing

Radiation Hardening Techniques

RHBD-AL: Radiation Hardening by Design at Architecture Level

- Chip is floor-planned and considered in its entireness
 - Macro-blocks are built (and eventually replicated)

Bus

Radiation Hardening Techniques

RHBD-AL methodologies suggest replicating row and column decoders

charged particle

Radiation Hardening Techniques

RHBD-CL: Radiation Hardening by Design at Circuit Level

- Single block or circuit is considered
 - Design of logic gates in digital libraries
- Usually logic gates are devoted to a minimum area occupation
 - It is assumed they can be extensively used in an entire chip
 - From rad hard point of view they are not optimized
- XOR gate example
 - Six transistors (6T) vs ten transistors (10T)

Radiation Hardening Techniques

RHBD-LL: Radiation Hardening by Design at Layout Level

- Single transistor shape is considered
 - Shape to avoid degradation on channel borders
- Edgeless Transistor (ELT) represent a typical RHBD-LL solution
 - Annular Transistor or Ring Transistor

What was accomplished in the first 20 months of the project?

Microcontroller design and verification

- Digital Design and Verification of Chip Components
- Verification of the integrated Digital Design by VHDL / Verilog Simulation
- Hardware Verification in an FPGA Implementation

Experimental FPGA board

- Four test chips produced in the first 20 months of the project
- **Test Chip 1 (MORAL_TC01)** Single bit SRAM blocks of 32kbit and 64kbit
 - SRAM modules were tested on wafer at IHP

Test Chip 2 (MORAL_TC02) - 10-bit DAC for evaluation

- Evaluate the layout approach
- Designed, integrated into a test chip, and electrically characterized in lab with satisfactory results

Test Chip 2 (MORAL_TC02) - 10-bit DAC for evaluation

- Evaluate the layout approach
- Designed, integrated into a test chip, and electrically characterized in lab with satisfactory results

Project Developments Overview

- Test Chip 3 (MORAL_TC03) 12-bit ADC
 - Currently being electrically characterized in lab

- **Test Chip 4 (MORAL_TC04)** 12-bit DAC
 - Taped-in in July

- The C compiler (CompCert) porting for the MORAL architecture was completed
 - CompCert generated code currently being tested in FPGA
- Preliminary RTSK is running in the FPGA platform
- Work on final chip layout is undergoing

Preliminary MORAL Chip Layout

MORAL Website

- Access for more information and news about MORAL
- Links for the project Social Media
- PEAKTOP toolchain download

M¢F	RAL	Export-free Rad-hard Mic for Space A	rocontroller Applications		
	Home	ject News Partners Publications Contact Int	ern		
Project Project Abstract Motivation	Project Funding:	This project has received funding from the <u>European Union</u> 's Framework Programme Horizon 2020 for research, technological development and demonstration under grant agreement N° 870365.	≣ M⇔RA	Export-free Rad-hard Microcontroller for Space Applications	
Objectives PEAKTOP	Area of Activity:	H2020 Cali: H2020-ICT-2018-2020 Topic: ICT-19-2019		Home Project News Partners Publications Contact Intern	
	Period: Coordinator: Follow us:	January 1 st 2020 until April 30 th 2023 <u>IHP - Innovations for High Performance Microelectronics</u> Linkedin D YouTube ^{DE}	Home Sitemap Imprint Data Protection	Welcome to the H2020 Project MORAL "Export-free Rad-hard Microcontroller for Space Applications" Abstract The MORAL project basically has two objectives. One is to develop a completely European, ITAR (International Traffic in Arms Regulations) free microcontroller for space applications, focused on small statilities, fight control and payload computers for the purposes of mission control, earth observation, navigati	
	Copyright © 2019-2021 IMP GmbH Last update. 15.2.2021 (https://www.moral-project.eu/project.html)			and many other applications. The processor core of the microcontroller is based on a novel IHP Peaktop architecture, including novel, European instruction set. The microcontroller will provide mechanisms for increased reliability and adaptability according to the needs of the space applications. Besides the microcontroller, the required ITAR-free middleware, RTOS (Real Time Operating System) and toolchain will be also available. The other poal is to establish a new European company held by the core consortium partners involved in the project, which will target tarens- continential market. This new company, as the last stage of the evolution of the project, which will the microcontroller and give support to the market. It will be focused to produce the microcontroller that can bootstrap the European market for space applications. In particular, we will target the fast growing small satellite market. This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement n°870/855. This document reflects only the author's view and the Commission is not responsible for any use that may be made of the information it contains.	

Copyright @ 2019-2021 IHP GmbH | Last update: 15.2.2021 (https://www.moral-project.eu/index.htm

www.moral-project.eu

ELICSIR Workshop

Thank you for your attention!

GAbsInt

EMBEDDING INNOVATIONS

European Commission