

MicroMOSFET characterization for *in-vivo* dosimetry in brachytherapy.

Samuel Ruiz Arrebola, PhD.

Marqués de Valdecilla University Hospital (HUMV)
Investigation Institute IDIVAL

INDEX

- CHARACTERIZATION OF MOSFET DETECTORS FOR DIV IN BRACHYTHERAPY
 - Necessity and purpose.
 - Detector dependencies.
 - Results.
 - Conclusions.

MEDICAL PHYSICS

The International Journal of Medical Physics Research and Practice

Research Article

Characterization of microMOSFET detectors for *in vivo* dosimetry in high-dose-rate brachytherapy with ¹⁹²Ir

Samuel Ruiz-Arrebola M. Rosa Fabregat-Borrás, Eduardo Rodríguez, Manuel Fernández-Montes, Mercedes Pérez-Macho, María Ferri, Ana García, Juan Cardenal, María T. Pacheco, Javier Anchuelo, Ana M. Tornero-López, Pedro J Prada, Damián Guirado

► IMPLEMENTATION IN CLINICAL PRACTICE (HUMV).

NECESSITY AND PURPOSE

NECESSITY: The high doses per fraction and few fractions associated with this type of treatment motivated the implementation of *in-vivo* dosimetry (IVD) in order to verify the correct administration of the dose.

PURPOSE: characterization of microMOSFET detectors for IVD in high-rate prostate brachytherapy.

- Need for a corrective model.
- Proposal of model and validation of this.

DETECTORS DEPENDENCIES

Measurement system

- MicroMOSFET TN-502RDM (Best Medical Canada).
- ▶ 1mm x 1mm x 3.5mm.
- Electrometer TN-RD-16: 5 simultaneous measurements.
- Elekta Steel Trocar needles of 1.9mm x200mm.
- Flexitrón equipment y Flexisource source 192Ir (Elekta).
- Treatment Planning System (TPS):
 Oncentra® Prostate (Elekta).

Phantom

- Phantom for calibration and characterization of detectors.
- Measurements with the phantom submerged in water.

Calibration

Calibration coefficient:

$$CF = [D(\vec{r}_0)/M(\vec{r}_0)]_{\text{cal}}$$

- Conditions:
 - $T_0 = 294,15K$
 - $R_0=3$ cm
 - Detector facing source
 - $D(r_0) = 1Gy$
- Reproducibility and intra-detector variation

Characterization

- Linearity
- Dependence with temperature
- Dependence with distance
- Angular dependency.

Angular dependency

X=0

Y=0

Z=0

Correction model

Relationship between the measurement of the microMOSFET and the absorbed dose in water:

$$D(\vec{r}) = CF \cdot f(T, r, \theta, \phi) \cdot M(\vec{r})$$

$$f(T, r, \theta, \phi) = f_1(T) \cdot f_2(r) \cdot f_3(\theta, \phi)$$

Multiple stop positions of a source (real treatments):

$$D(\vec{r}) = \sum_{i=1}^{N} D_i(\vec{r}) = \sum_{i=1}^{N} CF \cdot f(T, r_i, \theta_i, \phi_i) \cdot M_i(\vec{r})$$

Correction model

The TPS allows to obtain the dose contributions of each source stop at the measurement point. The absorbed dose at that point can be written:

$$D(\vec{r}) \sum_{i=1}^{N} \frac{D_{i}(\vec{r})}{D(\vec{r})} f(T, r_{i}, \theta_{i}, \phi_{i})^{-1} = \sum_{i=1}^{N} CF \cdot M_{i}(\vec{r}) = CF \cdot M(\vec{r})$$

The absorbed dose at the point of interest determined from the microMOSFET reading, and taking into account the correction model, is given by the following expression: $D(\vec{r}) = F \cdot CF \cdot M(\vec{r})$

$$F = \left[\sum_{i=1}^{N} rac{D_i(ec{r})}{D(ec{r})} f(T, r_i, heta_i, \phi_i)^{-1}
ight]^{-1}$$

Validation of the correction model

- Phantom to reproduce prostate brachytherapy treatments.
- Reproduction of 4 treatments with a prescription dose of 12Gy and 16 needles.
- 5 additional needles are inserted to place 5 microMOSFETs in the vicinity of:
 - left and right neurovascular bundle,
 - periurethral area,
 - rectal mucosa.
- 19 microMOSFET measurements to compare with the TPS dose.

RESULTS

Calibration and reproducibility

microMOSFET	1	2	3
$\overline{M}_j(\times 10^{-1} \text{ V})$	1.22(2)	1.10(2)	1.16(2)
$CF_j(cGy/mV)$	0.82(2)	0.91(2)	0.86(4)
Reproducibility (%) Variation inter-detector (%)	2.3		

Uncertainty

Contributions to the global uncertainty of the calibration coefficient (k=1)

Sources of uncertainty	Uncertainty (%)
Air Kerma Strength (S_K)	1.5
TPS interpolation	2.6
Source to microMOSFET distance	2.0
Resolution of electrometer	0.009
Reproducibility	2.3
Phantom size	1.0
Positioning of the detector	1.5
Total uncertainty of CF*	4.4
Total uncertainty including correction	4.6

Linearity

Temperature dependency

Distance dependency

Angular dependency

$$f_3(\theta,\phi)^{-1} = b_{(\theta,\phi),0} + b_{\theta,1}\sin(\theta) + b_{\phi,1}\sin(\phi) + b_{\phi,2}\cos(\phi)$$

Angular dependency

Model validation

CONCLUSIONS

(characterization)

- The microMOSFET detectors analyzed present considerable dependencies.
- These dependencies can be corrected using the proposed models, improving the accuracy of the measurements.

IMPLEMENTATION IN CLINICAL PRACTICE

Procedure for the case of real-time prostate implants of HDR:

- Common procedure until needle insertion.
- An additional needle is added for each detector.
- Dosimetry calculation with TPS.
- ▶ The point of measurement in the TPS is indicated by ultrasound imaging.
- Treatment is administered at the same time as measurements are performed.
- A file is extracted that records all the dosimetry information of the measurement points and the correction model is applied.

microMOSFET positioning

TPS image of a real patient.

Funded by the Horizon 2020 Framework Programme of the European Union

THANKS!

Samuel Ruiz Arrebola

Marqués de Valdecilla University Hospital (HUMV)
Investigation Institute IDIVAL