

sensing solutions

Co-financed by the Connecting Europe Facility of the European Union

UNIVERSIDAD DE GRANADA

NFC dosimeter tag for radiotherapy treatments based on commercial MOSFETs

<u>A. Pousibet¹</u>, P. Escobedo-Araque¹, D.Guirado-Llorente², A.J. Palma¹, M.A. Carvajal¹

¹Department of Electronics and Computer Technology, ETSIIT, University of Granada, E-18071 Granada, Spain

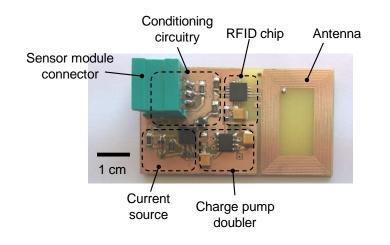
²Radiophysics Service, University Hospital "San Cecilio", E-18012 Granada, Spain

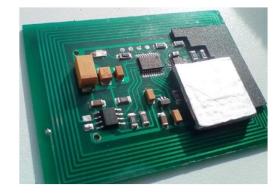
October 2022 3rd ELICSIR Training School

Why NFC tags with sensing capabilities?

- Energy Harvesting => No batteries required
- NFC is very popular on Android devices
- Cost saving
- Possibility to laminate and sterilize the device
- Construction in flexible substrates
- Only a smartphone and the tag is required
- Easy to use

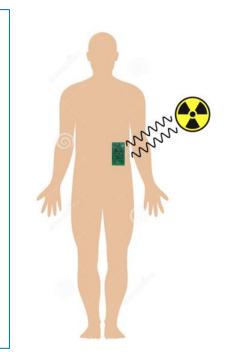
Introduction


Related NFC radiation dosimeters


Our previous work

- Interchangeable MOSFET sensor module based on ZVP3306
- Small size
- NFC band: 13.56 MHz
- NFC chip as controller

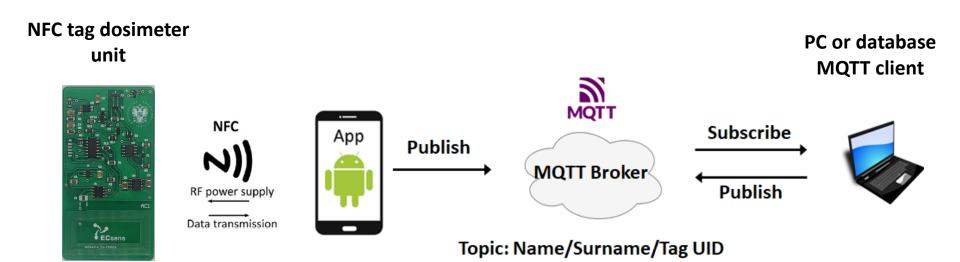
- ID-card-size dosimeter for continuous personnel monitoring (range of cGy)
- Based on phototransistors and film badges
- NFC band: 13.56 MHz
- NFC chip + microcontroller

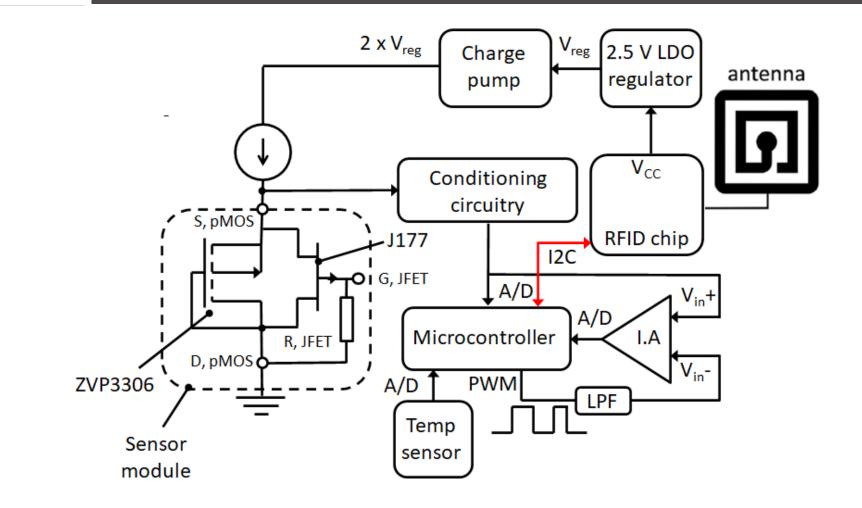


Motivation:

Our Goal

- To develop a battery-less NFC tag reader for MOSFET dosimeters.
 Improve and upgrade the previous system.
- Cost saving
- MOSFETs have a good linear response to radiation
- MOSFETs low current consumption
- No batteries or wires are required
- Potential application in radiotherapy treatments
- Small size
- User-friendly interface. Easy to use





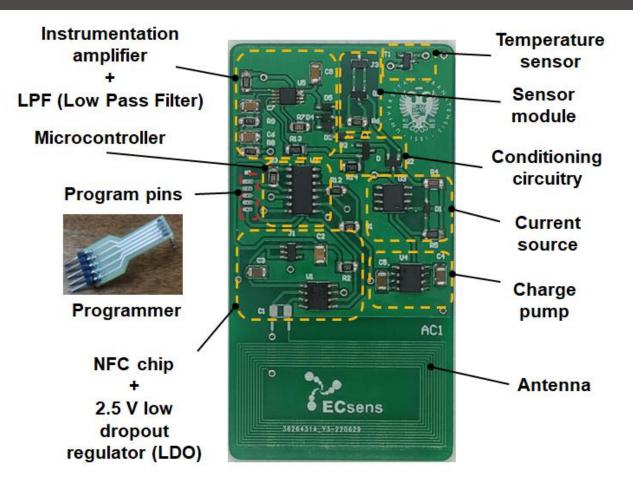
NFC tag: block diagram

Ecsens Electronic and Chemical sensing solutions

elicsirproject

NFC tag: Size comparison

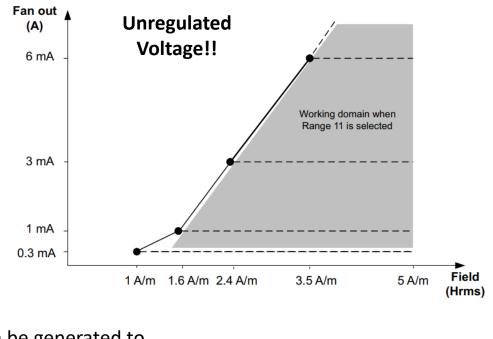
13:27 & 상 상 NFC Tag ID:) 3f6aca43d8	∦ ⊡ 奈 (5c02e0	
Temperature: Date:			24.29°C 13:23:23		
		1			
s	amples	Counts	Voltage	Dose (Gy)	
	ADC 1	0419	1.023V	N/A	
	DC AMP	0456	1.114V	N/A	
	ADC 2	0419	1.023V	N/A	
A	DC AMP 2	0455	1.111V	N/A	
	ADC 3	0419	1.023V	N/A	
A	DC AMP 3	0453	1.107V	N/A	
	PW	/M_DUTY	RESTART	ADC	
		0157	No		
Voltag	ge Shift		2.443m	V	
P	WM			SET PWM	
	READ		TART	MQTT	
PWM PUBLISH					
RE-LOGIN					

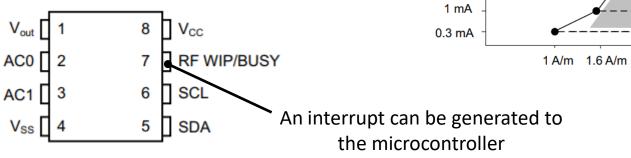


NFC tag: functional blocks

Ultra-low consume (3.3 mW)

elics Froject 3rd ELICSIR Training School

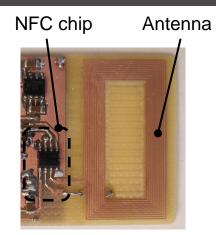


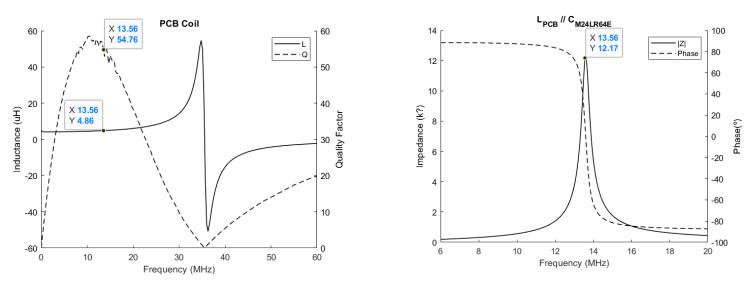


NFC tag: RFID chip

M24LR64E

- Manufacturer: STMicroelectronics
- Energy Harvesting
- 64 kB EEPROM memory, that can
- be written and read via NFC or I2C
- ISO 15693 and ISO 18000-3

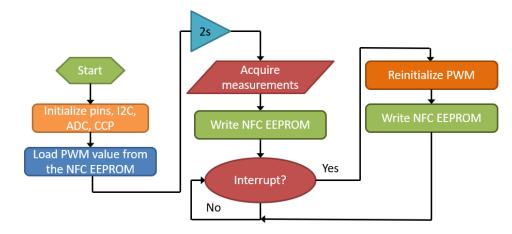

3rd ELICSIR Training School


Co-financed by the Connecting Europe Facility of the European Union

NFC tag: Antenna

- Antenna: L_{PCB} // C_{M24LR64E}
 - $C_{M24LR64E}$ =27.5 pF (theoretical), for resonance at 13.56 MHz \rightarrow L = 5.01µH
 - L_{PCB} 10 turns \rightarrow 4.86 μ H \rightarrow resonance at 13.62 MHz
 - Can be corrected with a parallel capacitor
 - Rs → 2.45 Ω

SIFproject 3rd ELICSIR Training School


NFC tag: Microcontroller

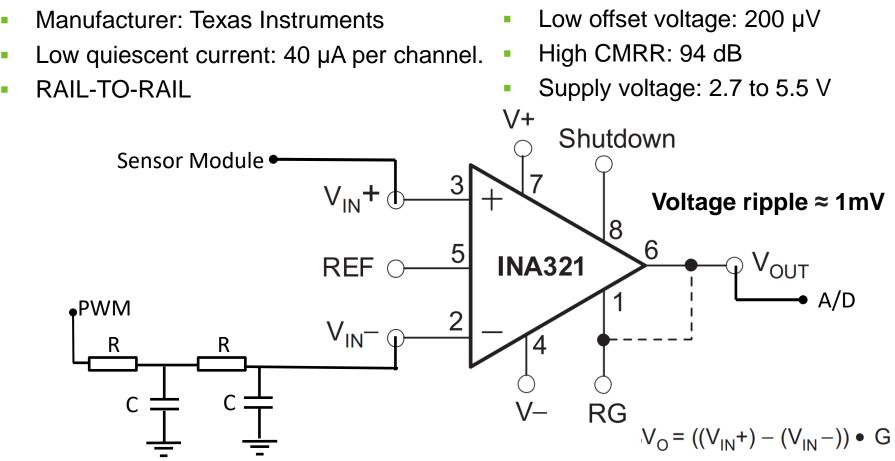
PIC16LF1703 eXtreme Low-Power series (XLP)

- Manufacturer: Microchip
- Operating current: 32uA/ MHz @ 1.8 V typical

project

- Operating voltage range: 1.8V to 3.6V
- Serial communications: SPI, I2C
- 10-Bit Analog-to-Digital Converter (ADC)
- Compare/Capture/PWM module (CCP)

3rd ELICSIR Training School



14 Vss VDD T1 RA5 2 13 RA0/ICSPDAT PIC16(L)F1703 RA4 [3 RA1/ICSPCLK VPP/MCLR/RA3 4 11 RA2 RC5 D 10 T RC0 RC1 RC4 [6 9 RC3 7 80 RC2

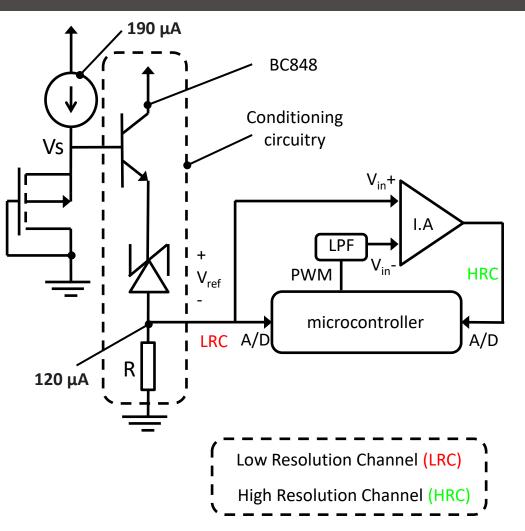
NFC tag: Tag IA

INA321

e

3rd ELICSIR Training School

ject


NFC tag: Analog circuitry

Buffer and signal conditioning:

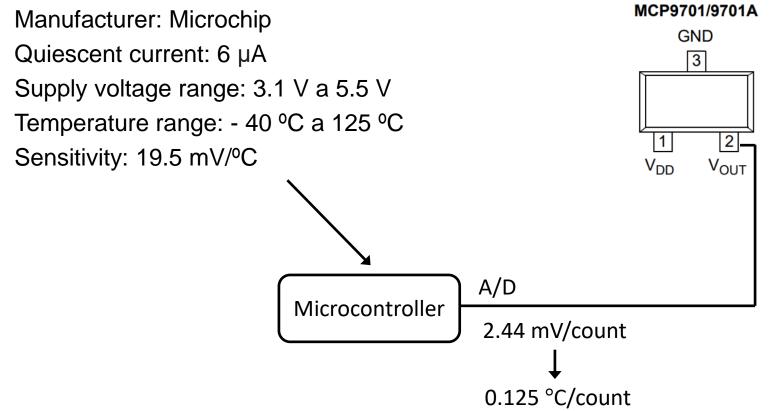
- Avoid the source current subtraction
- Thermal compensation
- To reduce the emitter voltage down to the 0.9-1.5 V range.

$$\alpha_{HRC} = (\alpha_S - \alpha_{BE}) + \alpha_{IA}/G$$

NFC tag: Analog circuitry

Reduction of thermal drift

	$\alpha_S (mV/^{\circ}C)$	α (mV/°C)	Reduction (%)
V _S (LRC)	-1.76 ± 0.33	-0.45 ± 0.08	75 %
Amplificated V_S (HRC)	-1.76 ± 0.33	-0.32 ± 0.05	82 %

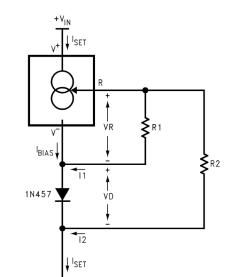


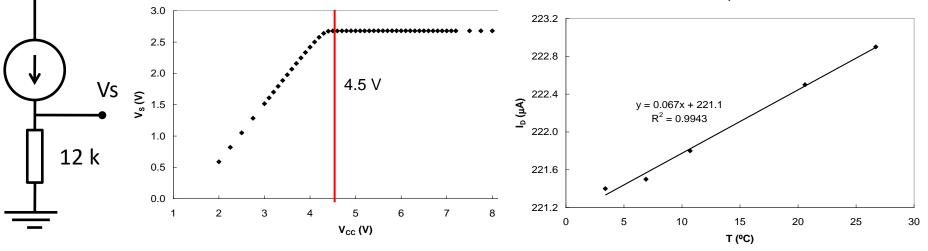
Co-financed by the Connecting Europe Facility of the European Union

NFC tag: Temperature sensor

MCP9701A

Vcc

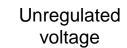

NFC tag: Power management


Current source and supply:

- Based on LM334 (Texas Instruments, USA)
- Circuit for thermal compensation suggested by the manufacturer
- Load: Resistor of 12 kΩ, DC source from 2 to 8 V
- Minimum voltage: 4.5 V.
- The voltage regulator does not provide enough voltage

roject

Use of a DC/DC up converter



NFC tag: Power management

Voltage regulator MCP1824-2502

- Low quiescent current: 120 µA
- Input Operating Voltage Range: 2.1V to 6.0V
- Typical Output Voltage Tolerance: 0.4%

	SOT-23			
Pin	Fixed	Adjustable		
1	V _{IN}	V _{IN}		
2	GND (TAB)	GND (TAB)		
3	SHDN	SHDN		
4	PWRGD	ADJ		
5	V _{OUT}	V _{OUT}		
6				

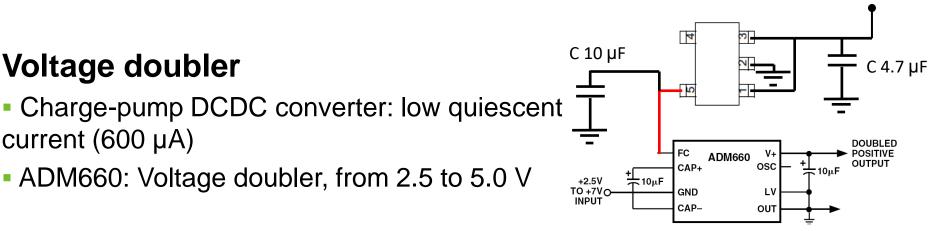
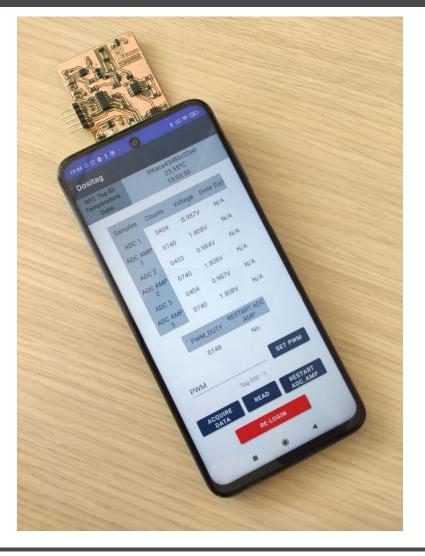


Figure 8. Voltage Doubler Configuration

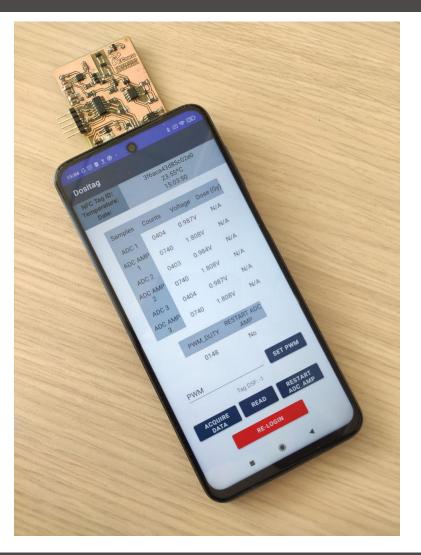
Voltage doubler

current (600 µA)

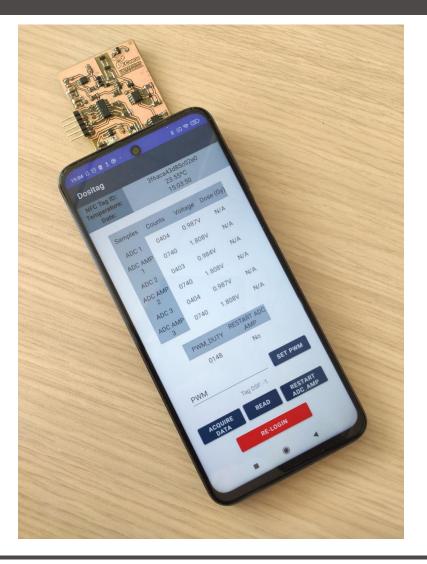

ADM660: Voltage doubler, from 2.5 to 5.0 V

Ecsens Android App: Measurement protocol

The smartphone is placed on 1. top of the tag

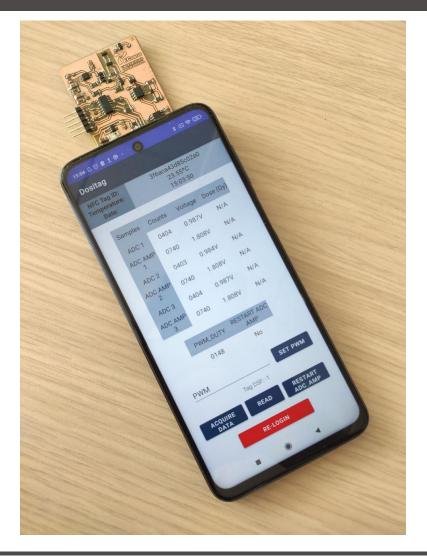


- The smartphone is placed on 1. top of the tag
- The system makes the zero. 2. The smartphone is removed



Android App: Measurement protocol

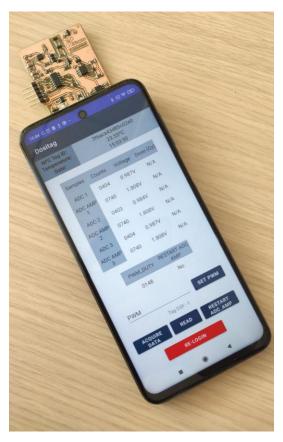
- The smartphone is placed on top of the tag
- 2. The system makes the zero. The smartphone is removed
- 3. The Smartphone is placed again. The system acquires the measurements.



project 3rd ELICSIR Training School

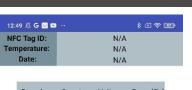
Android App: Measurement protocol

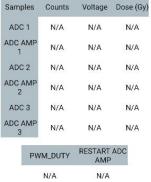
- The smartphone is placed on top of the tag
- 2. The system makes the zero. The smartphone is removed
- 3. The Smartphone is placed again. The system acquires the measurements
- 4. Finally, the amplificated and direct voltage shift is presented in the Smartphone

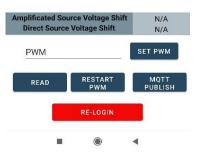


Android App: Measurement protocol

- 1. The smartphone supplied the tag when it is placed on top of it and the coils are overlapped
- 2. Zeroing: The tag waits one second for the system to stabilize, and then:
 - 1. The PWM value is loaded from the EEPROM and set
 - 2. Direct and amplified Vs voltage are measured
 - 3. Direct and amplified Vs values are stored in the EEPROM of the NFC chip
 - 4. The values are read by the Smartphone when the user presses the "READ" button


Ecsens Encreased Android App: Measurement protocol


3rd ELICSIR Training School


- 3. **Dose measurements:** The smartphone is placed over the tag again. The measurement has been started when the tag waits one second
 - 1. The PWM value is loaded from the EEPROM and set.
 - 2. The direct and amplified source voltage are measured and stored in the EEPROM of the NFC chip.
 - 3. The data are read by the smartphone from the NFC chip when the user press "READ" button
 - The user presses the "RESTART_ADC_AMP" button to reset the PWM to make the zero in the next measure
- 4. **Data presentation:** The Smartphone presents the current direct and amplified source voltage shift $V_{shift} = V s_{current} V s_{zeroing}$

roject

ed by the Connecting Euro

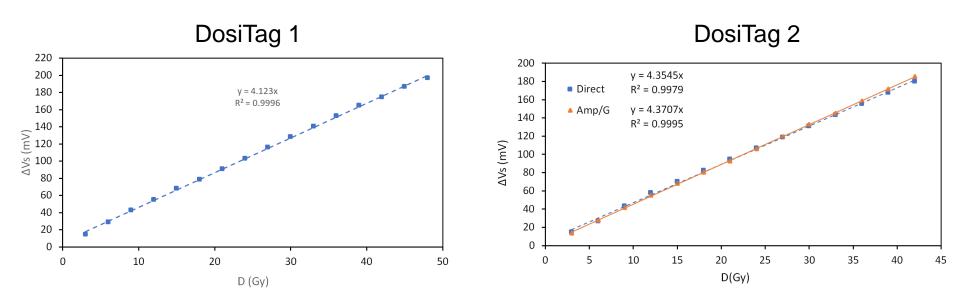
UNIVERSIDAD

DE GRANADA

Dose measurements: Experimental method

Experimental setup:

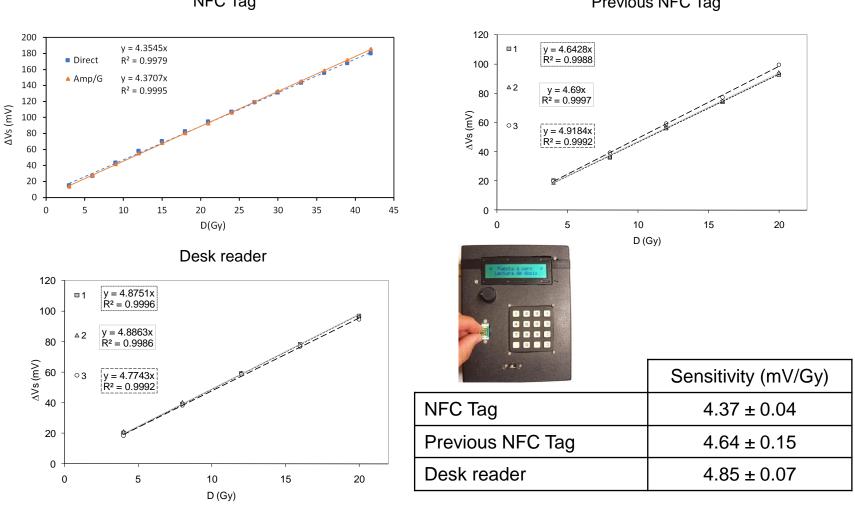
- Two NFC readers are irradiated using a LINAC Siemens Artiste
- Photon beans of 6 MV irradiation field of 20x20 cm².
- 1.5 cm of solid water as a buildup layer.
- Sessions of 3 Gy.


Measurement protocol:

- 1. The zero was made with NFC reader by resetting the PWM and measure the direct and amplified source voltage
- 2. The total area of the tag were irradiated (Siemens Artiste)
- 3. After 3 minutes the source voltage was measured again
- 4. The voltage shift was calculated
- 5. Finally, the PWM is restarted and repeat the process every 15 minutes

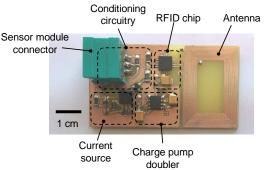
Results

	Sensitivity (mV/Gy)		Total dose	Resolution	
	LRC	HRC	(Gy)	(cGy)	
DosiTag 1	4.12 ± 0.02	-	57	79	
DosiTag 2	4.35 ± 0.17	4.37 ± 0.04	42	2	



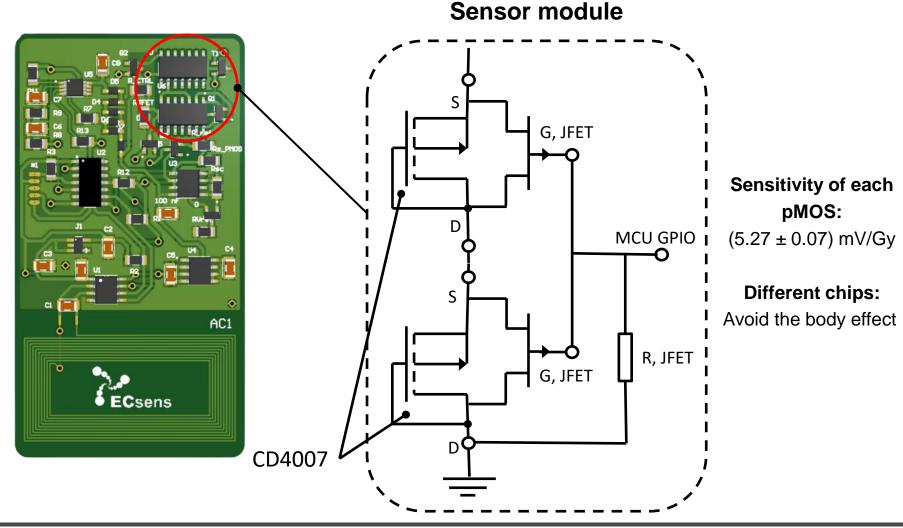
Previous work

Previous NFC Tag

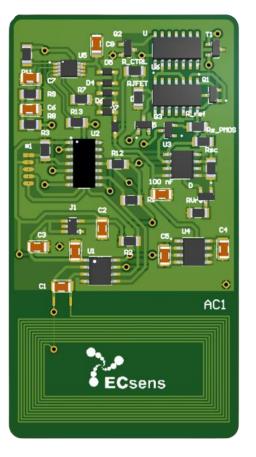

Co-financed by the Connecting Europe Facility of the European Union

Improvements over the previous work

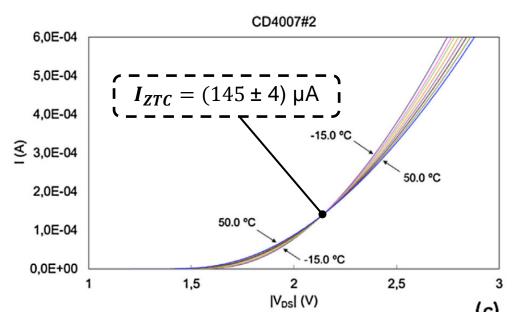
Feature	Previous NFC dosimeter	DosiTag	Improvement/novelty	
Circuit architecture	Only NFC chip	MCU + NFC chip	Inclusion of MCU allows the full control of the measurement variables (time, start/end, etc.)	
NFC chip model	SL13A (AMS)	M24LR64E (STMicroelectronics)	The SL13A chip is a discontinued device	
Sensitivity	(4.75 ± 0.15) mV/Gy	(4.37 ± 0.04) mV/Gy	Although average sensitivity has slightly been reduced, its associated uncertainty has been significantly reduced	
Resolution	17 cGy	2 cGy	Resolution has improved by a factor of 8	
Total dose	20 Gy	42 Gy	Total irradiation dose has been increased	
Smartphone	Rooting required	No need to root	No root access is needed in the smartphone	
Smartphone app	Designed for Android 5.1	Designed for Android 10	Smartphone app has been redesigned and improved. Higher Android versions are supported	
IoT capabilities	No IoT implemented	Cloud service (based on MQTT protocol)	Integration with IoT allows classification, distribution and storage of patient's data	
Irradiation area	Only sensor module	Whole tag	New version allows the irradiation of the complete dosimeter tag, not only the sensor module	
Tag encapsulation	Not possible	Possible	Previous sensor connector made tag encapsulation impossible to be sterilized or submerged in liquids	
Holder structure	Ad-hoc wood structure	No structure/holder is required	Previous version required a holder structure to ensure adequate and repeatable energy harvesting	


Component	Encapsulation	Manufacturer	Distributor	Ud	P	rice
PIC16LF1703	SOIC-14	Microchip	RS Components	1	1.521	€
M24LR64E	SOIC-8	ST Microelectronics	RS Components	1	0.929	€
ADM660	SOIC-8	Analog Devices	RS Components	1	6.35	€
LM334M	SOIC-8	Texas Instruments	RS Components	1	1.467	€
1N4148	SOD-123	Vishay	RS Components	5	0.13	€
BC848C	SOT-23	Diodes Zetex	RS Components	1	0.125	€
LM385	SOT-23	Texas Instruments	RS Components	1	1.604	€
ZVP3306FTA	SOT-23	Diodes Incorporated	Mouser	1	0.73	€
J177	SOT-23	Onsemi	Mouser	1	0.43	€
MCP1824T-2.5 V	SOT23	Microchip	RS Components	1	0.536	€
Condensadores	SMD(1,10uF)	KEMET, Samsung	RS Components	4, 2	0.953,	0.582€
Resistencias	SMD 1206	-	RS Components	13	0.15	€
INA321	VSSOP-8	Texas Instruments	Mouser	1	2.93	€
Condensadores	SMD (3 pF, 100nF)	KYOCERA, KEMET	RS Components	1, 1	0.128,	0.176€
MCP9700	SOT-23	Microchip	Mouser	1	0.371	€
TOTAL	-	-	-		<mark>24.87</mark>	€

In development

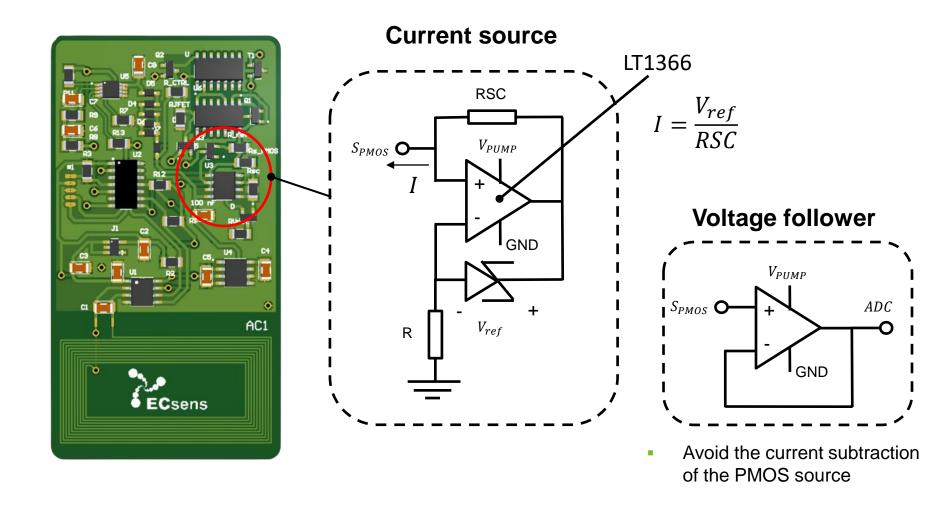


ECSENS Electronic and Chemical sensing solutions

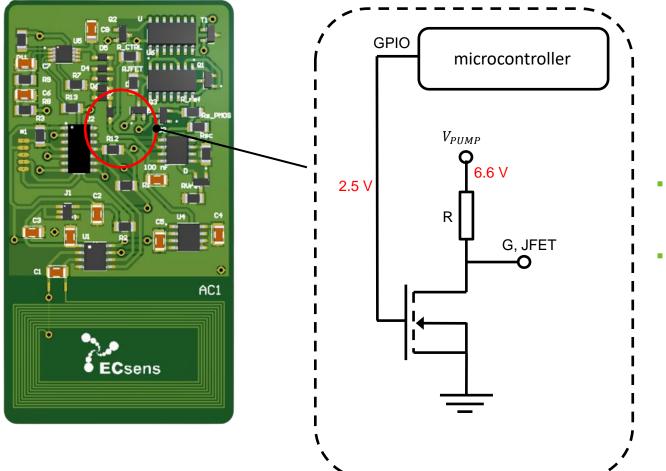


In development

Thermal compensation CD4007


- Easier thermal compensation
- No additional devices are required

Co-financed by the Connecting Euro Facility of the European Unio


Electronic and Chemical sensing solutions

elics Froject 3rd ELICSIR Training School

In development

JFET gate control

- The microcontroller performs multiple measurements
- No smartphone root is required

ECSENS Electronic and Chemical sensing solutions

elicsirproject 3rd ELIC

Conclusions

- The NFC reader topology is suitable for dose measurements
- The inclusion of the Internet of Things (IoT) facilitates the classification and storage of the data
- A very good inductive coupling is necessary to harvest enough energy
- Higher resolution than the previous NFC reader is achieved (17 cGy vs. 2 cGy).
- The whole tag was irradiated
- The system is still accurate after high doses of radiation, so it can have several uses
- Very good linearity is shown.
- A good sensitivity of (4.37 ± 0.04) mV/Gy is shown

Current and future tasks

- Test and validate the new design with the CD4007 pMOS transistor
- Laminate the card
- System construction in a flexible substrate
- Improve the database for storing the measurements

References

- Carvajal, M., Escobedo, P., Jiménez-Melguizo, M., Martínez-García, M., Martínez-Martí, F., Martínez-Olmos, A., & Palma, A. (2017). A compact dosimetric system for MOSFETs based on passive NFC tag and smartphone. *Sensors and Actuators A: Physical*, 267, 82–89.
- Carvajal, M., Martínez-García, M., Guirado, D., Banqueri, J., & Palma, A. (2016).
 Dose verification system based on MOS transistor for real-time measurement.
 Sensors and Actuators A: Physical, 247, 269–276.
- Martínez-García, M., del Río, J. T., Jaksic, A., Banqueri, J., & Carvajal, M. (2016). Response to ionizing radiation of different biased and stacked pMOS structures. *Sensors and Actuators A: Physical*, 252, 67–75.
- M.A. Carvajal (2008). "Diseño de un sistema dosimétrico portátil".
 ISBN: 978-84-691-7823-2.

Thank for your attention!!

.....

