

#### pMOS transistor 3N163







pMOS transistor 3N163

pMOS transistor
plastic
support
connections





















# Variance reduction techniques in Monte Carlo simulations: ants at work!

Salvador García-Pareja

Hospital Regional Universitario, Málaga, Spain



Universidad de Granada, Spain



UNIVERSIDAD DE GRANADA



# Outline

- Introduction
- ·Ant colony algorithm
- · Results
- Conclusions



oincrease of the computer power has made Monte Carlo simulation a powerful tool in many fields

oincrease of the computer power has made Monte Carlo simulation a powerful tool in many fields

oin particular: radiation transport in matter

oincrease of the computer power has made Monte Carlo simulation a powerful tool in many fields

```
oin particular: radiation transport in matter
```

surface spectroscopy electron microscopy - microanalysis with electronic probes radiation detector design - dosimetry - radiotherapy - ...

oincrease of the computer power has made Monte Carlo simulation a powerful tool in many fields

# oin particular: radiation transport in matter

Monte Carlo tool: any mathematical procedure that uses random numbers to solve problems

surface spectroscopy electron microscopy - microanalysis with electronic probes radiation detector design - dosimetry - radiotherapy - ...

oincrease of the computer power has made Monte Carlo simulation a powerful tool in many fields

# oin particular: radiation transport in matter

Monte Carlo tool: any mathematical procedure that uses random numbers to solve problems

- surface spectroscopy electron microscopy microanalysis with electronic probes radiation detector design dosimetry radiotherapy ...
- ohigh-energy particles traveling through matter: suffer interactions, transfer energy and produce new particles

oincrease of the computer power has made Monte Carlo simulation a powerful tool in many fields

# oin particular: radiation transport in matter

Monte Carlo tool: any mathematical procedure that uses random numbers to solve problems

- surface spectroscopy electron microscopy microanalysis with electronic probes radiation detector design dosimetry radiotherapy ...
- ohigh-energy particles traveling through matter: suffer interactions, transfer energy and produce new particles particle showers are formed

oincrease of the computer power has made Monte Carlo simulation a powerful tool in many fields

# oin particular: radiation transport in matter

Monte Carlo tool: any mathematical procedure that uses random numbers to solve problems

surface spectroscopy electron microscopy - microanalysis with electronic probes - radiation detector design - dosimetry - radiotherapy - ...

ohigh-energy particles traveling through matter: suffer interactions, transfer energy and produce new particles

Monte Carlo simulation: particle showers are formed produces exact results

oincrease of the computer power has made Monte Carlo simulation a powerful tool in many fields

# ein particular: radiation transport in matter

Monte Carlo tool: any mathematical procedure that uses random numbers to solve problems

surface spectroscopy electron microscopy - microanalysis with electronic probes radiation detector design - dosimetry - radiotherapy - ...

ohigh-energy particles traveling through matter: suffer interactions, transfer energy and produce new particles

Monte Carlo simulation: particle showers are formed

produces exact results but: statistical uncertainties!!

oincrease of the computer power has made Monte Carlo simulation a powerful tool in many fields

# oin particular: radiation transport in matter

Monte Carlo tool: any mathematical procedure that uses random numbers to solve problems

surface spectroscopy electron microscopy - microanalysis with electronic probes radiation detector design - dosimetry - radiotherapy - ...

ohigh-energy particles traveling through matter: suffer interactions, transfer energy and produce new particles

Monte Carlo simulation:

produces exact results but: statistical uncertainties!!

obetter precision and accuracy requires increasing the number of simulated histories

oincrease of the computer power has made Monte Carlo simulation a powerful tool in many fields

# oin particular:

radiation transport in matter

Monte Carlo tool: any mathematical procedure that uses random numbers to solve problems

surface spectroscopy electron microscopy - microanalysis with electronic probes - radiation detector design - dosimetry - radiotherapy - ...

ohigh-energy particles traveling through matter: suffer interactions, transfer energy and produce new particles

Monte Carlo simulation: particle showers are formed

produces exact results but: statistical uncertainties!!

large calculation CPU times!!

obetter precision and accuracy requires increasing the number of simulated histories

Introduction variance reduction techniques

# variance reduction techniques

procedures permitting the reduction of the statistical uncertainties without increasing the calculation time

# variance reduction techniques

procedures permitting the reduction of the statistical uncertainties without increasing the calculation time

- -avoid useless calculations
- -take advantage of the problem symmetries

# variance reduction techniques

procedures permitting the reduction of the statistical uncertainties without increasing the calculation time

- -avoid useless calculations
- -take advantage of the problem symmetries
- •Russian roulette •splitting •interaction forcing
- odirectional bremsstrahlung splitting orange rejection

# variance reduction techniques

procedures permitting the reduction of the statistical uncertainties without increasing the calculation time

- -avoid useless calculations
- -take advantage of the problem symmetries
- •Russian roulette •splitting •interaction forcing
- odirectional bremsstrahlung splitting orange rejection
- \*statistical weight: unbiased simulations!!

# variance reduction techniques

procedures permitting the reduction of the statistical uncertainties without increasing the calculation time

- -avoid useless calculations
- -take advantage of the problem symmetries
- •Russian roulette •splitting •interaction forcing
- odirectional bremsstrahlung splitting orange rejection
- \*statistical weight: unbiased simulations!!
- ·VRTs used properly increase the efficiency of the simulation!!

# variance reduction techniques

procedures permitting the reduction of the statistical uncertainties without increasing the calculation time

#### Obvious VRTs:

- -avoid useless calculations
- -take advantage of the problem symmetries
- Russian roulette esplitting einteraction forcing
- odirectional bremsstrahlung splitting orange rejection
- \*statistical weight: unbiased simulations!!
- ·VRTs used properly increase the efficiency of the simulation!!

how to do it?





Russian roulette

•Russian roulette

# esplitting

a particle in a state  $(\mathbf{r}, E, \hat{\mathbf{d}})$ , with weight  $w_0$ , moving towards a RoI, is transformed in  $\mathcal{S} > 1$  particles, in the same state, with weight  $w = w_0/\mathcal{S}$ 



#### Russian roulette

a particle with weight  $w_0$ , moving away from the RoI, is "killed" with probability  $\mathcal{K}$   $(0 < \mathcal{K} < 1)$ ; if it survives, its weight becomes  $w = w_0/(1 - \mathcal{K})$ 

# esplitting

a particle in a state  $(\mathbf{r}, E, \hat{\mathbf{d}})$ , with weight  $w_0$ , moving towards a RoI, is transformed in  $\mathcal{S} > 1$  particles, in the same state, with weight  $w = w_0/\mathcal{S}$ 

### Russian roulette

a particle with weight  $w_0$ , moving away from the RoI, is "killed" with probability  $\mathcal{K}$   $(0 < \mathcal{K} < 1)$ ; if it survives, its weight becomes  $w = w_0/(1 - \mathcal{K})$ 

# esplitting

a particle in a state  $(\mathbf{r}, E, \hat{\mathbf{d}})$ , with weight  $w_0$ , moving towards a RoI, is transformed in  $\mathcal{S} > 1$  particles, in the same state, with weight  $w = w_0/\mathcal{S}$ 

- •splitting:
  reduces variance but
  may increase CPU time
- Russian roulette:
   increases variance but
   reduces CPU time

### Russian roulette

a particle with weight  $w_0$ , moving away from the RoI, is "killed" with probability  $\mathcal{K}$   $(0 < \mathcal{K} < 1)$ ; if it survives, its weight becomes  $w = w_0/(1 - \mathcal{K})$ 

# esplitting

a particle in a state  $(\mathbf{r}, E, \hat{\mathbf{d}})$ , with weight  $w_0$ , moving towards a RoI, is transformed in  $\mathcal{S} > 1$  particles, in the same state, with weight  $w = w_0/\mathcal{S}$ 

## →usually used together

esplitting:

reduces variance but may increase CPU time

Russian roulette:
 increases variance but
 reduces CPU time

### Russian roulette

a particle with weight  $w_0$ , in the same state, with weight  $w = w_0/\mathcal{S}$  moving away from the RoI, is "killed" with probability  $\mathcal{K}$   $(0 < \mathcal{K} < 1)$ ; if it survives, its weight becomes  $w = w_0/(1 - \mathcal{K})$ 

- →usually used together
- →in problems with a well defined RoI
- esplitting:

a particle in a state  $(\mathbf{r}, E, \mathbf{d})$ ,

is transformed in S > 1 particles,

with weight  $w_0$ , moving towards a RoI,

esplitting

reduces variance but may increase CPU time

Russian roulette:
 increases variance but
 reduces CPU time

### Russian roulette

a particle with weight  $w_0$ , in the same state, with weight  $w = w_0/\mathcal{S}$  moving away from the RoI, is "killed" with probability  $\mathcal{K}$   $(0 < \mathcal{K} < 1)$ ; if it survives, its weight becomes  $w = w_0/(1 - \mathcal{K})$ 

- →usually used together
- →in problems with a well defined RoI
- →favor radiation flux toward the RoI and inhibit radiation moving away from it: used together save time computing wasted to track particles not contributing to the quantities of interest scored within the RoI

splitting:

a particle in a state  $(\mathbf{r}, E, \mathbf{d})$ ,

is transformed in S > 1 particles,

with weight  $w_0$ , moving towards a RoI,

reduces variance but may increase CPU time

•Russian roulette:

increases variance but reduces CPU time



esplitting

### •Russian roulette

a particle with weight  $w_0$ , in the same state, with weight  $w = w_0/\mathcal{S}$  moving away from the RoI, is "killed" with probability  $\mathcal{K}$   $(0 < \mathcal{K} < 1)$ ; if it survives, its weight becomes  $w = w_0/(1 - \mathcal{K})$ 

- →usually used together
- →in problems with a well defined RoI
- →favor radiation flux toward the RoI and inhibit radiation moving away from it: used together save time computing wasted to track particles not contributing to the quantities of interest scored within the RoI

esplitting:

a particle in a state  $(\mathbf{r}, E, \mathbf{d})$ ,

is transformed in S > 1 particles,

with weight  $w_0$ , moving towards a RoI,

esplitting

reduces variance but may increase CPU time

Russian roulette:

increases variance but reduces CPU time

VRT effectiveness depends on:

- $\bullet$   $\mathcal{S}$  and  $\mathcal{K}$  values
- strategy used for splitting and killing



- -ants look for food following random walks
- -if food is found, ants come back to the nest
- depositing pheromone
- -ants tend to follow paths with the largest
- level of pheromone
- -the level of pheromone increases in the
- optimal paths between nest and food

- -ants look for food following random walks
- -if food is found, ants come back to the nest
- depositing pheromone
- -ants tend to follow paths with the largest
- level of pheromone
- -the level of pheromone increases in the
- optimal paths between nest and food

particle source



```
-ants look for food following random walks
-if food is found, ants come back to the nest
depositing pheromone
-ants tend to follow paths with the largest
level of pheromone
-the level of pheromone increases in the
optimal paths between nest and food
```

particle source

particles

(photons)

```
-ants look for food following random walks
-if food is found, ants come back to the nest

    particle source

depositing pheromone
-ants tend to follow paths with the largest
level of pheromone
-the level of pheromone increases in the particle trajectories
optimal paths between nest and food
```

particles (photons)



```
-ants look for food following random walks
-if food is found, ants come back to the nest

    particle source

depositing pheromone
-ants tend to follow paths with the largest
level of pheromone
-the level of pheromone increases in the particle trajectories
optimal paths between nest and food
                                             → RoI
 particles
```

(photons)

-ants look for food following random walks -if food is found, ants come back to the nest particle source depositing pheromone -ants tend to follow paths with the largest level of pheromone -the level of pheromone increases in the particle trajectories optimal paths between nest and food → RoI importance particles (photons)

-ants look for food following random walks -if food is found, ants come back to the nest → particle source depositing pheromone -ants tend to follow paths with the largest level of pheromone -the level of pheromone increases in the particle trajectories optimal paths between nest and food → RoI importance particles (photons)

- -a particle source and a RoI are defined -the whole geometry is divided into virtual cells -each cell is characterized by an importance value

$$P_i = \frac{W_i^{\text{C}}}{W_i^{\text{P}}}$$
 sum of the weights of particles entering *i*-th cell and that reach the RoI (they or their descendants) sum of the weights of particles entering *i*-th cell

$$P_i = \frac{\mathcal{W}_i^{\text{C}}}{\mathcal{W}_i^{\text{P}}}$$
 sum of the weights of particles entering *i*-th cell and that reach the RoI (they or their descendants) sum of the weights of particles entering *i*-th cell

$$I = 2^k$$
 importance 
$$k = \begin{cases} \left[ 5\frac{P(i)}{P(0)} - 5 \right], & \text{if } P(i) \le P(0), \\ \left[ 7\frac{P(i) - P(0)}{1 - P(0)} \right], & \text{if } P(i) > P(0). \end{cases}$$

$$P_i = \frac{\mathcal{W}_i^{\text{C}}}{\mathcal{W}_i^{\text{P}}}$$
 sum of the weights of particles entering *i*-th cell and that reach the RoI (they or their descendants) sum of the weights of particles entering *i*-th cell

-once a particle enters a new cell, VRTs are applied according the particle weight (w) and the cell importance (I)

$$I = 2^k$$
 importance 
$$k = \begin{cases} \left[ 5\frac{P(i)}{P(0)} - 5 \right], & \text{if } P(i) \le P(0), \\ \left[ 7\frac{P(i) - P(0)}{1 - P(0)} \right], & \text{if } P(i) > P(0). \end{cases}$$

$$P_i = \frac{W_i^{\text{C}}}{W_i^{\text{P}}}$$
 sum of the weights of particles entering *i*-th cell and that reach the RoI (they or their descendants) sum of the weights of particles entering *i*-th cell

-once a particle enters a new cell, VRTs are applied according the particle weight (w) and the cell importance (I)

$$I = 2^k$$
 importance 
$$k = \begin{cases} \left[ 5\frac{P(i)}{P(0)} - 5 \right], & \text{if } P(i) \le P(0), \\ \left[ 7\frac{P(i) - P(0)}{1 - P(0)} \right], & \text{if } P(i) > P(0). \end{cases}$$

oif w·I>1: splitting in w·I particles with w'=1/I

$$P_i = \frac{W_i^{\rm C}}{W_i^{\rm P}}$$
 sum of the weights of particles entering *i*-th cell and that reach the RoI (they or their descendants) sum of the weights of particles entering *i*-th cell

-once a particle enters a new cell, VRTs are applied according the particle weight (w) and the cell importance (I)

$$I = 2^k$$
 importance 
$$k = \begin{cases} \left[ 5\frac{P(i)}{P(0)} - 5 \right], & \text{if } P(i) \le P(0), \\ \left[ 7\frac{P(i) - P(0)}{1 - P(0)} \right], & \text{if } P(i) > P(0). \end{cases}$$

oif w·I>1: splitting in w·I particles with w'=1/I

oif w·I<1: apply Rr with survival probability w·I; if particles survives: w'=1/I

$$P_i = \frac{W_i^{\text{C}}}{W_i^{\text{P}}}$$
 sum of the weights of particles entering *i*-th cell and that reach the RoI (they or their descendants) sum of the weights of particles entering *i*-th cell

-once a particle enters a new cell, VRTs are applied according the particle weight (w) and the cell importance (I)

$$I = 2^k$$
 importance 
$$k = \begin{cases} \left[ 5\frac{P(i)}{P(0)} - 5 \right], & \text{if } P(i) \le P(0), \\ \left[ 7\frac{P(i) - P(0)}{1 - P(0)} \right], & \text{if } P(i) > P(0). \end{cases}$$

oif w·I>1: splitting in w·I particles with w'=1/I

oif w·I<1: apply Rr with survival probability w·I; if particles survives: w'=1/I

eif w·I=1: do nothing

Results

Results

# MOSFET used as a in-vivo dosimeter

# MOSFET used as a in-vivo dosimeter



-address the possible angular dependence of the MOSFET response to irradiation

# MOSFET used as a in-vivo dosimeter



-address the possible angular dependence of the MOSFET response to irradiation

• If RoI is restricted to SiO₂

-the algorithm does not work!!

-because of the few number of particles reaching the RoI,

•filling the importance map to begin applying VRT takes a large CPU time (1000 particles reaching the RoI)

•actualization of the importance map is extremely slow and uncertainties remain huge

# MOSFET used as a in-vivo dosimeter



-address the possible angular dependence of the MOSFET response to irradiation

- If RoI is restricted to SiO₂

  -the algorithm does not work!!

  -because of the few number of particles reaching the RoI,

  •filling the importance map to begin applying VRT takes a large CPU time (1000 particles reaching the RoI)

  •actualization of the importance map is extremely slow and uncertainties remain huge
- optimal RoI:

   -whole Si die + SiO<sub>2</sub> + air
   -a gain factor ~70 to fill the importance map and "human" CPU times to reach reasonable uncertainties

Results

### Results



Points: experiment Gray bands: Monte Carlo







3ra. ELICIK Iraining school, Granada 24-26 October 2022



eVRTs allow simulating problems with very low statistics

- eVRTs allow simulating problems with very low statistics
- The ant colony algorithm developed allows the efficient implementation of VRTs by using the information scored on importance maps and with a minimum intervention of the user ... but details are relevant

- ovRTs allow simulating problems with very low statistics
- The ant colony algorithm developed allows the efficient implementation of VRTs by using the information scored on importance maps and with a minimum intervention of the user ... but details are relevant
- ·Applications in other problems:
  - -clinical linacs
  - -radiosurgery photon beams (very small fields)
  - -specific absorbed fractions (nuclear medicine)
  - -correction factors of small ionization chambers



- M. Anguiano Univ. Granada (Spain)
- G. Díaz Londoño Inst. Tech. Metropolitan Medellín (Colombia)
- F. Salvat Univ. Barcelona (Spain)
- L. Brualla Universitatsklinikum Essen (Germany)
- A. Palma, M.Á. Carvajal Univ. Granada (Spain)
- D. Guirado Hosp. Univ. Granada (Spain)
- F. Erazo SOLCA Cuenca (Ecuador)
- M. Vilches IMOMA Oviedo (Spain)
- P. Galán Hosp. Univ. Málaga (Spain)

# Variance reduction techniques in Monte Carlo simulations: ants at work! S. García-Pareja, A. M. Lallena



Thanks !!







### Photon beams for radio surgery

-very narrow beams used for treatment of small lesions nearby healthy tissues that have to be preserved -huge simulation CPU times!!













### Photon beams for radio surgery



-very narrow beams used for treatment of small lesions nearby healthy tissues that have to be preserved -huge simulation CPU times!!

-VRT applied to both electrons and photons

 $I_1 = I(x, y, z, E, M)$  for electrons.

 $I_2 = I(x, y, z, E, M, \theta, \phi)$  for photons.





### Photon beams for radio surgery



-very narrow beams used for treatment of small lesions nearby healthy tissues that have to be preserved -huge simulation CPU times!!

-VRT applied to both electrons and photons

 $I_1 = I(x, y, z, E, M)$  for electrons.

 $I_2 = I(x, y, z, E, M, \theta, \phi)$  for photons.

directional Bremsstrahlung splitting is needed
 applied throughout the whole geometry























## Photon beams for radio surgery





CPU times: 9 h (10 mm) to 0.9 h (30 mm)







## Photon beams for radio surgery







high energy electrons

20

10



















-inform about organ/tissue irradiation due to diagnostic or therapy of other organ
-interest in Nuclear Medicine





-inform about organ/tissue irradiation due to diagnostic or therapy of other organ
-interest in Nuclear Medicine

-problem: very low statistics because of organ volume and/or distance to source





-inform about organ/tissue irradiation due to diagnostic or therapy of other organ -interest in Nuclear Medicine

-problem: very low statistics because of organ volume and/or distance to source

-efficiency increase by a factor 10!!





-inform about organ/tissue irradiation due to diagnostic or therapy of other organ
-interest in Nuclear Medicine

-problem: very low statistics because of organ volume and/or distance to source

-efficiency increase by a factor 10!!

## Correction factors of micro-chambers





-inform about organ/tissue irradiation due to diagnostic or therapy of other organ
-interest in Nuclear Medicine

-problem: very low statistics because of organ volume and/or distance to source

-efficiency increase by a factor 10!!

reproject

Correction factors of micro-chambers



## Some applications Specific absorbed

### Specific absorbed fractions

-inform about organ/tissue irradiation due to diagnostic or therapy of other organ
-interest in Nuclear Medicine

-problem: very low statistics because of organ volume and/or distance to source

-efficiency increase by a factor 10!!

Correction factors of micro-chambers

-efficiency increases by a factor 100!!





roject

#### Conclusions

- An optimization algorithm based on 'ant colony behavior' has been developed
- •It allows the efficient implementation of variance reduction techniques
- •It uses the information scored on importance maps
- Minimum intervention by the user is required ... but details are relevant





