

Improving the sensitivity of passive RADFET detectors

Russell Duane, Nikola Vasovic, Mary White, Alan Blake, Anne-Marie McGarrigle, Srbolijub Stankovic, Aleksandar Jaksic

3rd ELICSIR Summer School in University of Granada

Tyndall company Varadis – custom RADFETS

• Space – ESA, NASA, JAXA, Satellites

Passive RADFET patches/tags for radiotherapy

Passive RADFET Patches for lower doses

Electrogenics Labs

- Radiotherapy
- Interventional Radiology
- CT Scans

Lower Doses

How can higher RADFET Sensitivity help?

M A Carvajal et al 2011 Phys. Med. Biol. 56 3535

Higher RADFET Sensitivity Detects Lower Doses if Electronic Noise/Drift remains same

- RADFET Sensitivity Review
- How to increase RADFET Sensitivity
 - Geometry
 - Material
 - Readout

How is biased RADFET sensitive to radiation?

Tim Oldham, Basic Mechanisms of TID and DDD response in MOS and Bipolar Microelectronics, IEEE NSREC Course 2011

RADFET – PMOSFET Transistor

RADFET – PMOSFET Transistor

- RADFET Sensitivity Review
- How to increase passive RADFET Sensitivity
 - Geometry
 - Material
 - Readout

RADFET Geometry

Geometry Effect – Width, Length

MOSFET Area=W*L um²

$$|\Delta V_T| = \frac{|\Delta Q_{OX}|}{C_{OX}} = \frac{A * Q'_{OX}}{\frac{A * \varepsilon_{OX}}{T_{OX}}} = \frac{Q'_{OX} * T_{OX}}{\varepsilon_{OX}}$$

> Uniform charge trapping in W and L dimension

Fig. 3. ΔV_T during irradiation with negative, zero and positive gate bias for RADFETs with different W/L; W and L in μ m.

A. Jaksic, G. Ristic, M. Pejovic, A. Mohammadzadeh and W. Lane, "Characterisation of radiation response of 400 nm implanted gate oxide RADFETs," 2002 23rd International Conference on Microelectronics. Proceedings (Cat. No.02TH8595), 2002, pp. 727-730 vol.2, doi: 10.1109/MIEL.2002.1003360.

T_{ox} Dependence– Passive (OV during irradiation)

Electric Field in Passive RADFET @0V

What is causing Sensitivity increase?

Passive RADFET Model

> Geometry results indicate uniform trapped charge generation over the volume of the dielectric at low doses

R. C. Hughes, "Theory of response of radiation sensing field effect transistors", Journal of Applied Physics 58, 1375-1379 (1985) https://doi.org/10.1063/1.336110

- RADFET Sensitivity Review
- How to increase passive RADFET Sensitivity
 - Geometry
 - Material
 - Readout

High k Dielectrics

More energy is deposited in HfO₂ than SiO₂ @400kev

A. Dasgupta, D. M. Fleetwood, R. A. Reed, R. A. Weller, M. H. Mendenhall and B. D. Sierawski, "Dose Enhancement and Reduction in SiO 2 and Hih- κ MOS Insulators," in *IEEE Transactions on Nuclear Science*, vol. 57, no. 6, pp. 3463-3469, Dec. 2010

Tyndall results

High k MOSFET (ROXFET)

T. Cramer, I. Fratelli, P. Barquinha, A. Santa, C. Fernandes, F. D'Annunzio, C. Loussert, R. Martins, E. Fortunato, B. Fraboni, Passive radiofrequency x-ray dosimeter tag based on flexible radiation-sensitive oxide field-effect transistor. Sci. Adv. 4, eaat1825 (2018).

ROXFET High K Dielectric Stack

k =13.5

Sensitivity Comparison

- Published ROXFET sensitivity @35kV Xray
- I reduced by factor of 3 to estimate Co60 response
- >10 times increase in sensitivity versus RADFET

ROXFET Fading of Charge

80% of charge fades after 2000 seconds

- RADFET Sensitivity Review
- How to increase passive RADFET Sensitivity
 - Geometry
 - Material
 - Readout

RADFET – PMOSFET Transistor

Bulk Silicon as Back Gate ; Silicon as Dielectric

Numerical Simulations

$$V_B| = \frac{|\Delta Q_{OX}|}{C_{BULK}} = \frac{|\Delta Q_{OX}|}{\sqrt{\frac{q\epsilon_s N_{BULK}}{2V_{BULK}}}}$$
$$|\Delta V_G| = |\Delta V_T| = \frac{|\Delta Q_{OX}|}{C_{OX}}$$

• Using Bulk as Gate with low N_B Good charge sensor Poor transistor

Device/Circuit Architecture

Analytical Theory vs Numerical Simulation

$$\Delta V_{SENSOR}| = \frac{|\Delta Q_{OX}|}{C_{BULK}} = \frac{|\Delta Q_{OX}|}{\sqrt{\frac{q\epsilon_s N_{BULK}}{2V_{SENSOR}}}}$$

Irradiation experiment (T_{ox}=400nm)

Irradiation experiment (T_{ox}=850nm)

Comparison with Best Medical

Fading experiment (T_{ox}=400nm)

- Passive RADFET Sensitivity can be increased a number of ways:
 - Dielectric Thickness and SiO₂ process
 - High k Dielectric Material to generate more charge
 - Bulk electrode as a back-gate to enhance voltage sensitivity
- Increased sensitivity is possible with High k and new readout but so far at expense of increased fading
- > Fading and noise floor of both these approaches needs to be carefully examined

Thank you for your attention. Questions?

E: <u>russell.duane@tyndall.ie</u> T: + 353 21 2346201

ROXFET Dielectric – Attenuation Length

X-ray Irradiation: 35kV Molybedium Tube

Linearity with Diode Temperature Compensation

Measured Current-Voltage vs Temperature

New Materials improve performance

$$|\Delta V_{SENSOR}| = \frac{|\Delta Q_{OX}|}{C_B}$$

Energy Dependence

Dose levels

Typical Fraction =2Gy 5% is 100mGy

Wire Free (Passive) Single use dosimeters

NANODOT Optical Stimulated Luminescence Commercially available

Our patch

Nikola Vasovic Now in Varadis