

RFID technology applied to dosimetry

Pablo Escobedo Araque – University of Granada, Spain 2nd WORKSHOP ELICSIR PROJECT, 9-10.03.2021

UNIVERSIDAD DE GRANADA

- Introduction
- RFID Technology
- NFC tag for readout of MOSFET dosimeters
- Conclusions
- Future work

oject

Introduction

- RFID technologies for implantable medical device identification
- *Q Inside SmartMarker*: implantable RF radiation sensor that provides localization of a tumor and measures radiation dose at the tumor site
- LF band: 30 KHz to 500 KHz

- Dose Verification System (DVS) (Sicel Technologies, Inc., Cary, NC)
- Sicel's Implantable Radiation Dosimeter
- LF band: 30 KHz to 500 KHz

Introduction

- Goal: To develop a passive NFC reader for MOSFET dosimeters
- Why an NFC reader for MOSFET dosimeters?
 - Most of smartphones include an NFC reader
 - Passive tags without battery with sensing capabilities
 - Cost saving and easy to use for non-trained users
 - Android devices are very popular

2nd WORKSHOP ELICSIR PROJECT, 9-10.03.2021

Soncor A. (

B: 0137-31

RFID Technology: What is RFID?

- RFID: Radio Frequency IDentification
 - Information carried by radio waves
 - It enables product identification and information gathering without contact
 - Overview of a generic RFID system:

RFID Technology: RFID tag classification

Power source

- Active
- Passive
- Semi-passive
- Operating frequencies
 - LF, MF, HF, VHF, UHF, SHF

Coupling mechanism

- Inductive (near field):
 - magnetic field (HF)
- Radiative (far field):

EM wave (UHF)

Block diagram

elicsirproject

2nd WORKSHOP ELICSIR PROJECT, 9-10.03.2021

UNIVERSIDAD

NFC tag and sensor module

Conditioning

RFID chip

<u>SL13A:</u>

- Manufacturer: AMS (Austria)
- Sensor front end (SFE):
 - ADC 10 bits
 - Input range: 300-600 mV
- EEPROM memory, which can be written and read via NFC
- Supply voltage output:

oject

 Regulated 3.2 V output, up to 4 mA: 13mW

SL13A Block Diagram

- ■Antenna: L_{PCB} || C_{SL13A}
 - C_{SL13A} =25 pF, for resonance at 13.56 MHz \rightarrow L = 5.5µH
 - L_{PCB} , 12 turns \rightarrow 5.41µH \rightarrow Resonance at 13.61 MHz

elics r_{project}

• Analog circuitry: Current source and buffering

2nd WORKSHOP ELICSIR PROJECT, 9-10.03.2021

project

- Analog circuitry: Buffer and signal conditioning
- No load the source current
- To reduce the source voltage down to 300-600 mV range

$$V_{in}^{ADC} = \frac{R_2}{R_1 + R_2} \left(V_S - V_{BE} - V_{ref} \right)$$

$$\Delta V_{in}^{ADC} = \alpha \Delta T$$

$$\Delta V_{S} = \alpha_{S} \Delta T$$

$$\Delta V_{RE} = \alpha_{RE} \Delta T$$

$$\alpha = \frac{R_{2}}{R_{1} + R_{2}} (\alpha_{S} - \alpha_{RE})$$

	I (μA)	α (mV/ºC)	Δα (mV/ºC)			
VBE_BJT	30	-2.332	0.013			
Vs_MOSFET	220	-2.30	0.12			

Analog circuitry: Current source

- Based on LM334 (Texas Instruments, USA)
- Circuit for thermal compensation suggested by the manufacturer

Power management: Supplying the current source

- Load: Resistor of 12 kΩ, DC source from 2 to 8 V
- Minimum voltage: 4.5 V.
- The SL13A does not provide enough voltage

Power management: Voltage doubler

Charge-pump DCDC converter: low quiescent current (600 μA)

• ADM660: Voltage doubler, from 3.2 to 6.4 V

roject

8 V+

losc

ADM660

TOP VIEW

(Not to Scale) 6 LV

FC 1

CAP+ 2

GND 3

- Android app: Measurement protocol
 - 1. The smartphone activates the NFC, then the tag is supplied.
 - 2. The smartphone sends the measurement command to the SL13A
 - 3. The results of A/D conversion is stored in the EEPROM memory of the SL13A
 - 4. The EEPROM memory is read by the smartphone
 - 5. This process is repeated 10 times and storage in a file in the smartphone
 - 6. The NFC of the smartphone is turned off.

Setup for NFC measurements

- Structure made of wood to ensure the inductive coupling:
 - Tag coil and smartphone coil as close as possible and overlapped
 - 3D printing (e.g. PLA) could be used for this purpose

Dose measurements: Experimental method

Experimental setup:

- 3 sensor modules irradiated using a LINAC Siemens Artiste
- Photon beans of 6 MV irradiation field of 10x10 cm²
- 1.5 cm of solid water as build-up layer
- 5 sessions of 4 Gy each

Measurement protocol:

- 1. The zero was made with NFC reader and with our desk unit
- 2. The sensor modules were irradiated (Siemens Artiste)
- 3. After 5 minutes the source voltage was measured again with the NFC reader and the standard unit.
- 4. Finally the voltage shift was calculated

Results

project

	#1		#2		#3			Average				
NFC reader	4.64	±	0.03	4.69	±	0.02	4.92	±	0.03	4.75	±	0.15
Desk reader	4.88	±	0.02	4.89	±	0.04	4.77	±	0.03	4.85	±	0.07

Conclusions

NFC tag for readout of MOSFET dosimeters

- A compact and passive tag is presented to dose measurements with sensor based on MOSFETs.
- The NFC reader topology is suitable for dose measurements.
- A very good inductive coupling is necessary to harvest enough energy.
- Good linearity has been found

Future work

- NFC tag for readout of MOSFET dosimeters
 - Irradiation of the whole NFC tag (reader and sensor module) to check the viability of radiation tag.
 - Design and fabrication of a structure using 3D printing technology for compatibility with different models of smartphones.

UNIVERSITARIO

RFID technology applied to dosimetry

Pablo Escobedo Araque – University of Granada, Spain 2nd WORKSHOP ELICSIR PROJECT, 9-10.03.2021

THANK YOU FOR YOUR ATTENTION- QUESTIONS?