

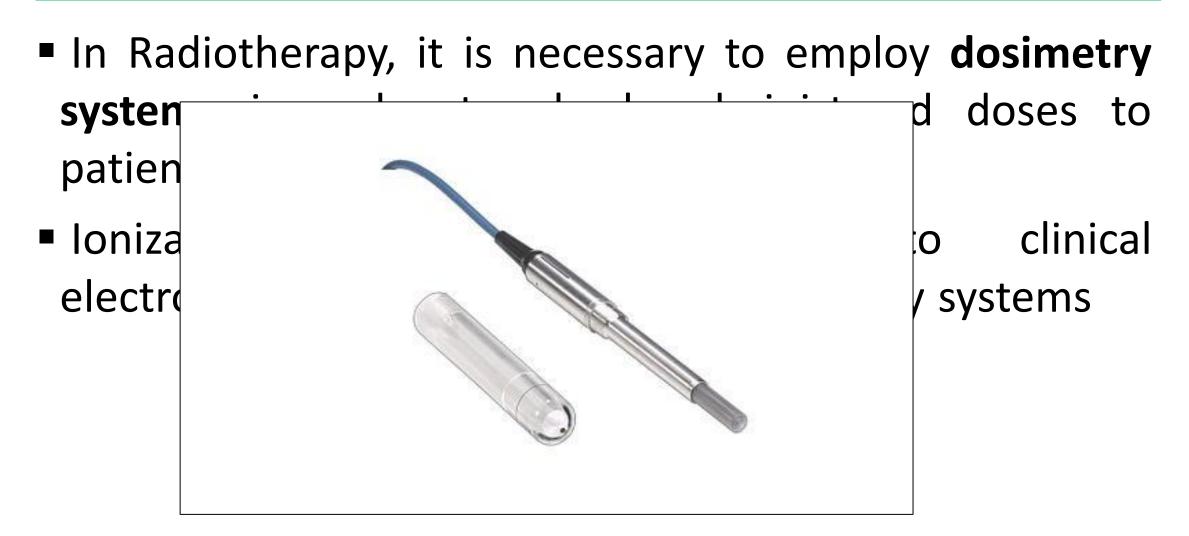
Dose measurements with clinical electrometers and Light-Dependent Resistances

Juan Román-Raya – San Cecilio Clinical University Hospital, Granada, Spain

2nd WORKSHOP ELICSIR PROJECT, 9-10.03.2021

UNIVERSIDAD DE GRANADA

In Radiotherapy, it is necessary to employ dosimetry systems in order to check administered doses to patients.



- In Radiotherapy, it is necessary to employ dosimetry systems in order to check administered doses to patients.
- Ionization chambers, connected to clinical electrometers, are the most used dosimetry systems

roject

- In Radiotherapy, it is necessary to employ dosimetry systems in order to check administered doses to patients.
- Ionization chambers, connected to clinical electrometers, are the most used dosimetry systems

- In Radiotherapy, it is necessary to employ dosimetry systems in order to check administered doses to patients.
- Ionization chambers, connected to clinical electrometers, are the most used dosimetry systems →
 Expensive

- In Radiotherapy, it is necessary to employ dosimetry systems in order to check administered doses to patients.
- Ionization chambers, connected to clinical electrometers, are the most used dosimetry systems →
 Expensive
- The cost of these devices would be reduced if devices not specifically manufactured for dosimetry were used.

Motivation

■ Cancer patients → Radiotherapy (52%)

Motivation

■ Cancer patients → Radiotherapy (52%)

■ Check administered doses → Dosimetry systems

Motivation

■ Cancer patients → Radiotherapy (52%)

■ Check administered doses → Dosimetry systems

• In vivo dosimetry \rightarrow Detect dosimetric errors

Is in vivo dosimetry used in all centers?

Is in vivo dosimetry used in all centers?

NO

Is in vivo dosimetry used in all centers?

NO

Costly

project

e

Time consuming

Is in vivo dosimetry used in all centers?

- Costly
- Time consuming

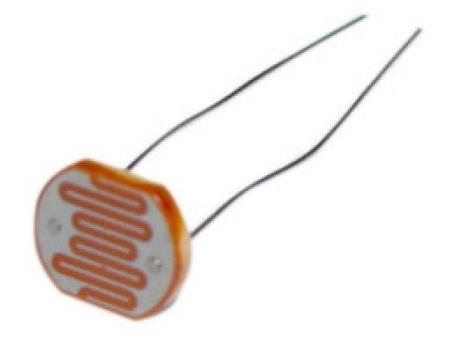
New systems cheaper and easier to handle

■ Light-Dependent Resistances (LDRs) → visible light detectors → their resistances reduce when increasing light intensity.

- Light-Dependent Resistances (LDRs) → visible light detectors → their resistances reduce when increasing light intensity.
- Same behavior under ionizing radiation? → YES

- Light-Dependent Resistances (LDRs) → visible light detectors → their resistances reduce when increasing light intensity.
- Same behavior under ionizing radiation? → YES
- Two models of commercial LDRs have been characterized with a clinical electrometer as a reader unit for monitoring LDRs radiation response.

Irradiation unit



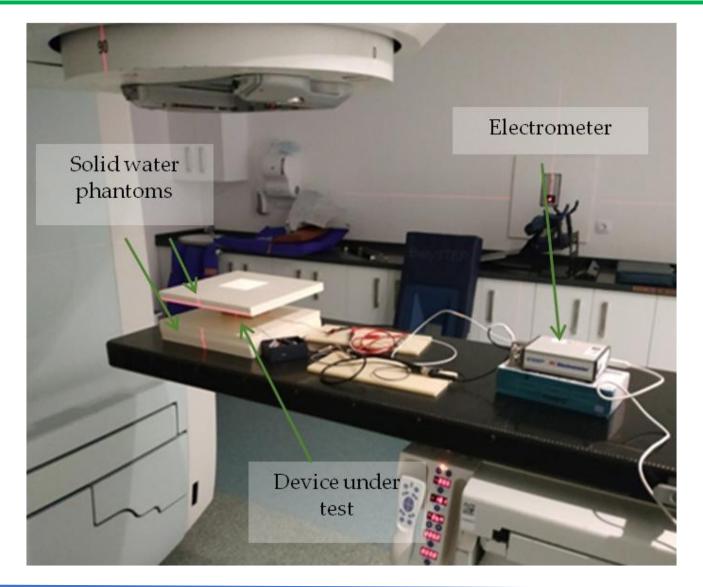
Light-Dependent Resistances

NSL-19M51

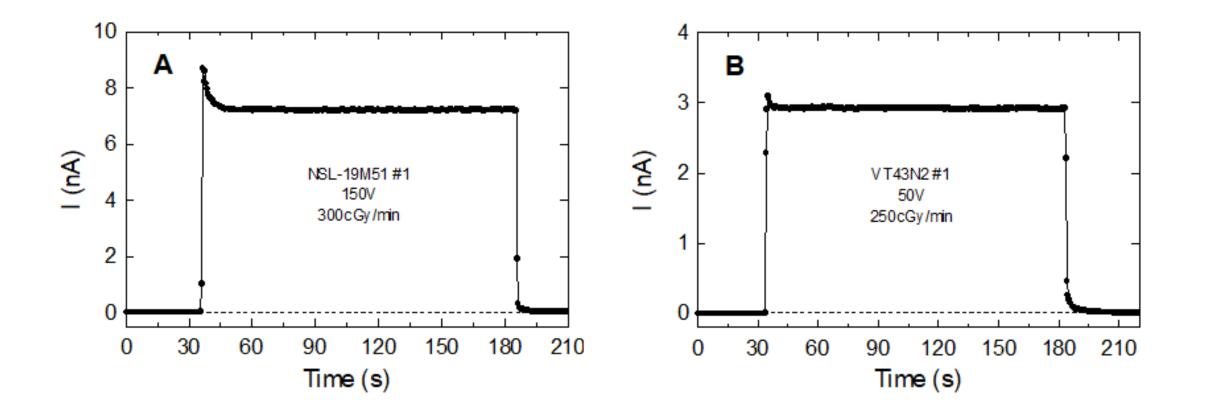
elicsirproject

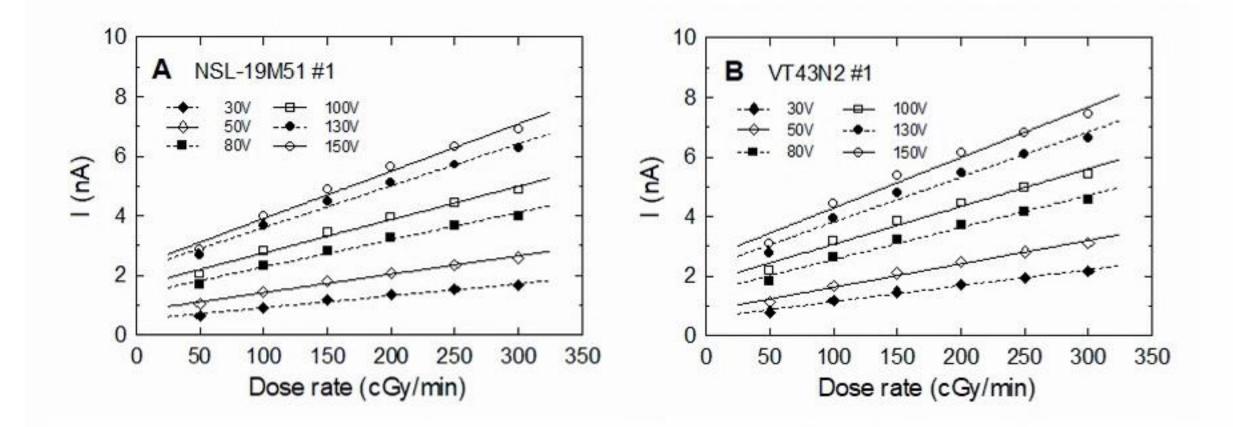
VT43N2

Clinical electrometer



PC Electrometer


Experimental setup

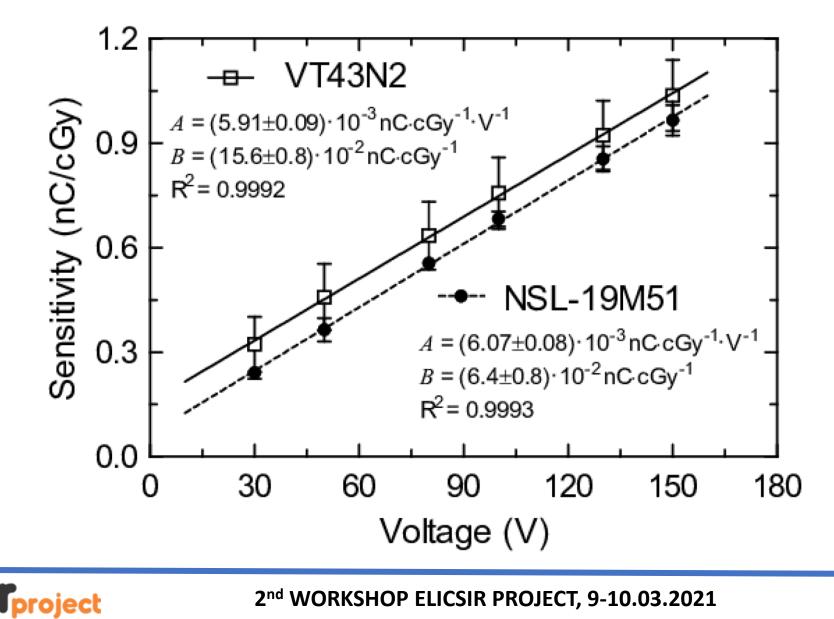

elicsirproject

elic

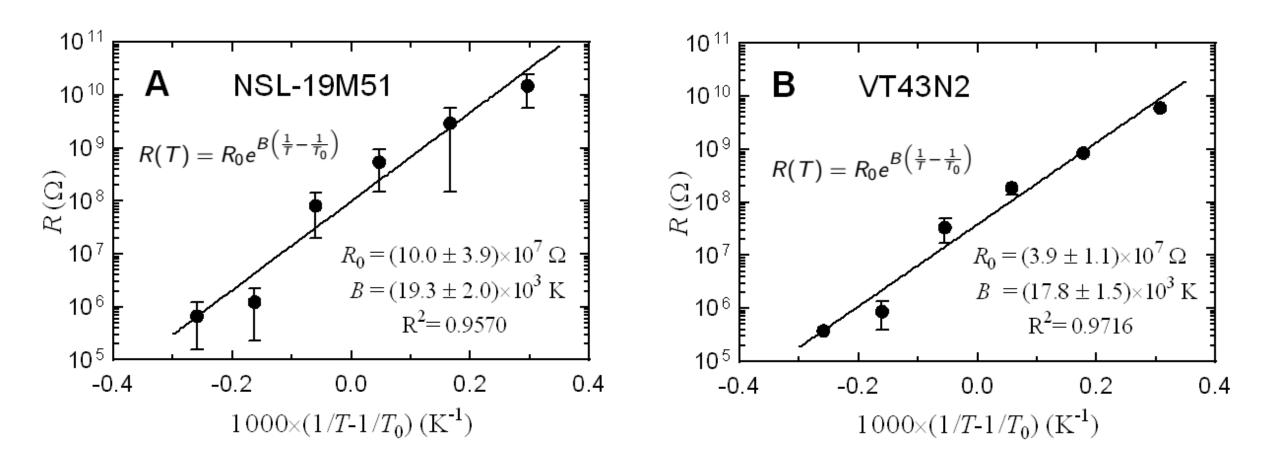
Project

NSL-19M51	(1)		(2)		(3)		Mean
I=aR+b	a (nC/cGy)	R ²	a (nC/cGy)	R ²	a (nC/cGy)	R ²	a (nC/cGy)
30 V	0.23±0.02	0.987	$0.24{\pm}0.03$	0.986	$0.24{\pm}0.02$	0.989	0.24 ± 0.02
50 V	0.34 ± 0.03	0.990	$0.37{\pm}0.04$	0.987	0.37 ± 0.04	0.989	0.36±0.03
80 V	0.55 ± 0.05	0.991	0.55 ± 0.06	0.987	0.55 ± 0.06	0.989	0.551 ± 0.004
100 V	0.69 ± 0.07	0.990	0.67 ± 0.08	0.987	0.67 ± 0.07	0.990	0.68±0.02
130 V	0.86±0.09	0.989	0.84 ± 0.10	0.986	$0.84{\pm}0.08$	0.991	0.85±0.03
150 V	0.98±0.10	0.989	0.95 ± 0.11	0.986	$0.94{\pm}0.09$	0.991	0.96±0.04

NSL-19M51	(1)		(2)		(3)		Mean
I=aR+b	a (nC/cGy)	R ²	a (nC/cGy)	R ²	a (nC/cGy)	R ²	a (nC/cGy)
30 V	0.23±0.02	0.987	0.24±0.03	0.986	0.24±0.02	0.989	0.24 ± 0.02
50 V	0.34±0.03	0.990	0.37 ± 0.04	0.987	0.37 ± 0.04	0.989	0.36±0.03
80 V	0.55 ± 0.05	0.991	0.55 ± 0.06	0.987	0.55 ± 0.06	0.989	0.551 ± 0.004
100 V	0.69 ± 0.07	0.990	0.67 ± 0.08	0.987	0.67 ± 0.07	0.990	0.68±0.02
130 V	0.86±0.09	0.989	0.84 ± 0.10	0.986	$0.84{\pm}0.08$	0.991	0.85±0.03
150 V	0.98 ± 0.10	0.989	0.95 ± 0.11	0.986	0.94 ± 0.09	0.991	0.96±0.04



VT43N2	(1)		(2)		(3)		Mean
I=aR+b	a (nC/cGy)	R ²	a (nC/cGy)	R ²	a (nC/cGy)	R ²	a (nC/cGy)
30 V	0.36±0.03	0.994	0.32±0.03	0.992	0.34±0.03	0.993	$0.34{\pm}0.04$
50 V	$0.50{\pm}0.04$	0.993	$0.47{\pm}0.04$	0.991	0.47 ± 0.04	0.991	0.48±0.03
80 V	0.68 ± 0.07	0.989	0.63 ± 0.07	0.988	0.62 ± 0.06	0.990	0.65 ± 0.06
100 V	0.81 ± 0.08	0.989	0.74 ± 0.09	0.986	0.74 ± 0.08	0.988	0.76 ± 0.07
130 V	0.97 ± 0.11	0.986	0.89±0.11	0.985	0.92±0.10	0.988	0.92 ± 0.08
150 V	1.08 ± 0.12	0.987	0.99±0.13	0.984	$1.04{\pm}0.11$	0.987	1.04±0.09


VT43N2	(1)		(2)		(3)		Mean
I=aR+b	a (nC/cGy)	R ²	a (nC/cGy)	R ²	a (nC/cGy)	R ²	a (nC/cGy)
30 V	0.36±0.03	0.994	0.32±0.03	0.992	0.34±0.03	0.993	$0.34{\pm}0.04$
50 V	$0.50{\pm}0.04$	0.993	0.47 ± 0.04	0.991	$0.47{\pm}0.04$	0.991	0.48±0.03
80 V	0.68 ± 0.07	0.989	0.63±0.07	0.988	0.62 ± 0.06	0.990	0.65±0.06
100 V	0.81 ± 0.08	0.989	0.74 ± 0.09	0.986	$0.74{\pm}0.08$	0.988	0.76±0.07
130 V	0.97 ± 0.11	0.986	0.89±0.11	0.985	0.92±0.10	0.988	0.92±0.08
150 V	1.08±0.12	0.987	0.99±0.13	0.984	1.04 ± 0.11	0.987	1.04±0.09

project

elicsirproject

It is feasible to measure the dose rate with the selected LDRs with dose rates between 50 and 300 cGy/min.

- It is feasible to measure the dose rate with the selected LDRs with dose rates between 50 and 300 cGy/min.
- Minimum correlation factor R²=0.984 in the worst case.

- It is feasible to measure the dose rate with the selected LDRs with dose rates between 50 and 300 cGy/min.
- Minimum correlation factor R²=0.984 in the worst case.
- Sensitivity of NSL-19M51: (0.24±0.02) (0.96±0.04) nC/cGy (30 — 150 V).

- It is feasible to measure the dose rate with the selected LDRs with dose rates between 50 and 300 cGy/min.
- Minimum correlation factor R²=0.984 in the worst case.
- Sensitivity of NSL-19M51: (0.24±0.02) (0.96±0.04) nC/cGy (30 — 150 V).
- Sensitivity of VT43N2: (0.34±0.04) (1.04±0.09) nC/cGy (30 — 150 V).

- It is feasible to measure the dose rate with the selected LDRs with dose rates between 50 and 300 cGy/min.
- Minimum correlation factor R²=0.984 in the worst case.
- Sensitivity of NSL-19M51: (0.24±0.02) (0.96±0.04) nC/cGy (30 — 150 V).
- Sensitivity of VT43N2: (0.34±0.04) (1.04±0.09) nC/cGy (30 — 150 V).
- Sensitivity of ionization chamber PTW 30010: 0.2 nC/cGy at 400 V.

Dose measurements with clinical electrometers and Light-Dependent Resistances

Juan Román-Raya – San Cecilio Clinical University Hospital, Granada, Spain 2nd WORKSHOP ELICSIR PROJECT, 9-10.03.2021

THANK YOU FOR YOUR ATTENTION- QUESTIONS?