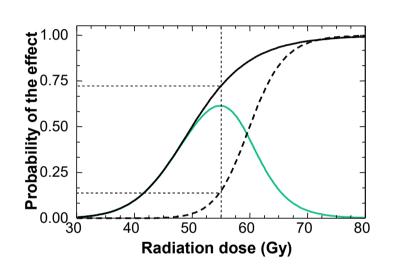
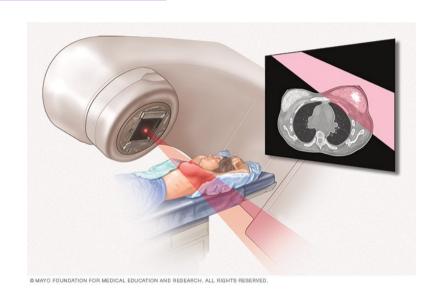
Detectors for radiotherapy

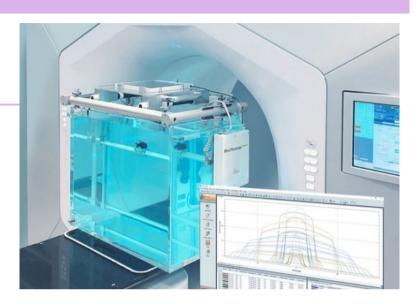
2nd ELICSIR Online Workshop





Damián Guirado dguirado@ugr.es

Goal of Radiotherapy

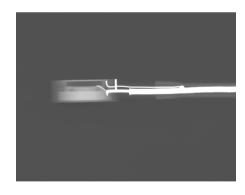


- → How can we open the therapeutic window?
 - → Improving the treatment technique.
 - → Improving the dose distribution over time.

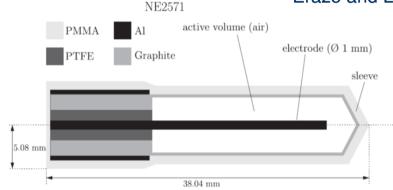
What do we need?

- → To determine the dose at a point
 - → Reference conditions
 - → Patients
 - → Pre-treatment verification
 - → In vivo dosimetry
- → To determine dose-distributions
 - → Caracterization of equipments
 - → Patients
 - → Pre-treatment verification
 - → In vivo dosimetry

Overview

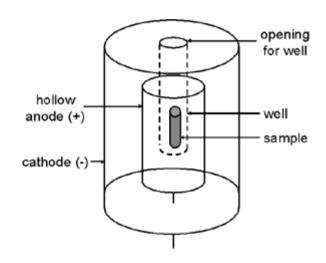

- → Detectors
 - → Main detectors
 - → Ionization chambers
 - → Diodes
 - → Radiochromic films
 - → Others detectors
 - → Diamonds,TLD's, MOSFET
 - → EPIDs
 - → In development
 - → Light-dependent resistor (LDR),...
- → Clinical application of MOSFET
 - → In vivo dosimetry in HDR-brachytherapy

Ionization chambers



Farmer type

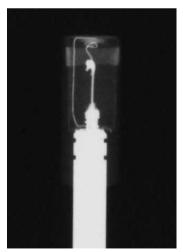
Plain-parallel type

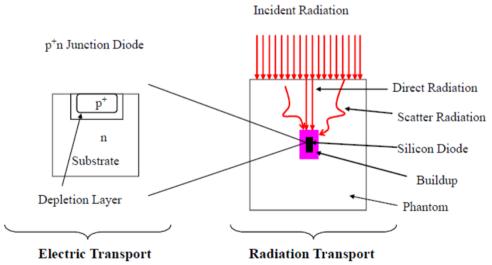


- → Reference detectors in radiotherapy
- → Designs adapted to different applications
 - → External radiotherapy
 - → Photons, electrons, protons, ...
 - → Brachytherapy
- Associated with electrometers: they are stable and robust over time

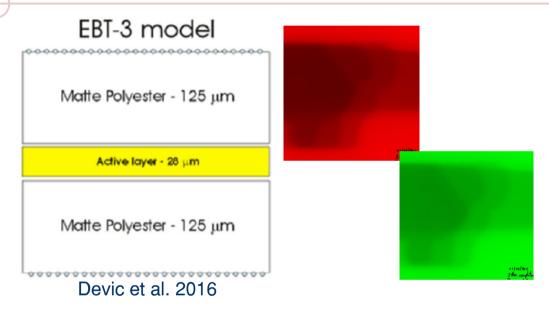
Ionization chambers

Well chamber

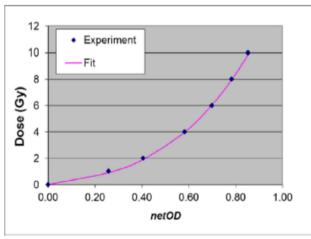



- → Dependences
 - → Recombination
 - → Temperature and presure
 - → Polarity effects

Diodes



- → Very small detection volume
- → Usually used at 0V
- → Dependence with:
 - → Temperature, energy, dose-rate
 - → Radiation incidence angle



Radiochromic film

- → High spatial resolution (2D)
- → Energy independent
- → Near tissue equivalence
- → Complex processing
- → Post-irradiation waiting time (24h)

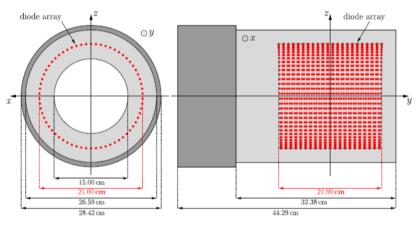

Calibration curve

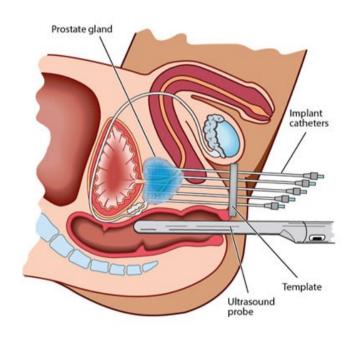
Other detectors

- → Electronic portal imaging devices (EPIDs)
- → Mosfet detectors
- → Diamond detectors
- → Thermoluminiscent detectors (TLDs)
- \rightarrow ...

Verification devices for IMRT and VMAT

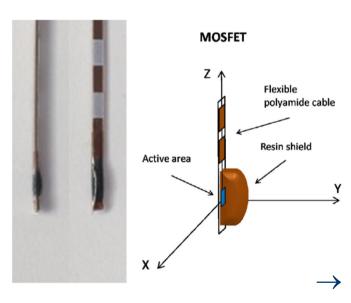
ArcCheck - Sun Nuclear - DIODES




Fig. 1. Sketch of the geometry of the ArcCHECK® device.

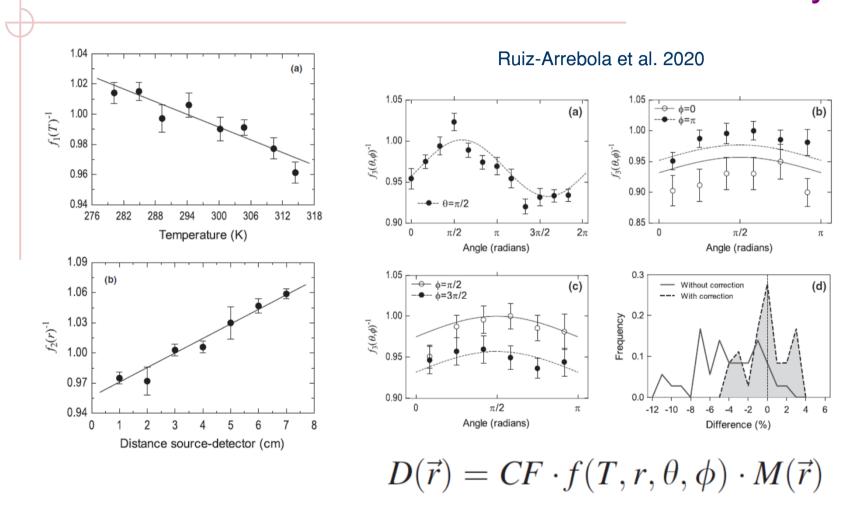
Octavius - PTW - IONIZATION CHAMBERS

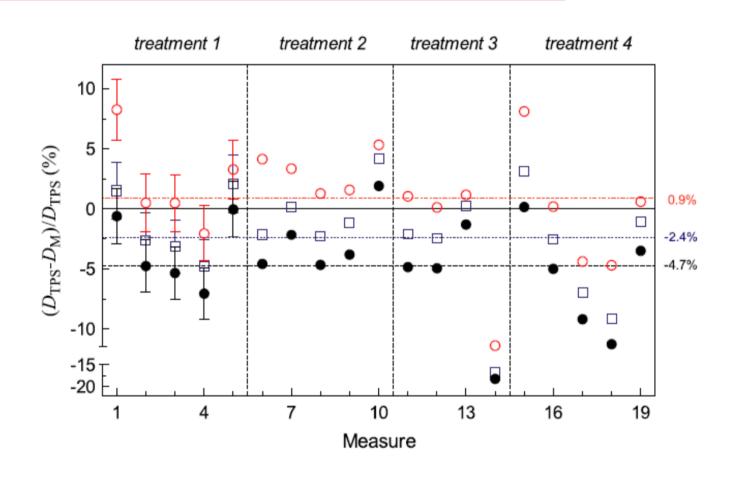
High dose-rate brachytherapy of prostate cancer



- → Need for in vivo dosimetry
- → Selection and characterization of detectors

microMOSFET detectors for in vivo dosimetry


Best Medical Canada microMOSFET



- MicroMosfet dependences:
 - → Temperature
 - → Detector-source distance
 - → Relative orientation detector-source

microMOSFET detectors for in vivo dosimetry

microMOSFET detectors for in vivo dosimetry

Summary

Device -Accuracy	Common Uses	Advantages	Limitations
lon Chambers ±1%	-Reference Dosimetry -Percent Depth Dose Distributions	-Best understood -Below 1% accuracy possible -Low energy dependence	-Size limitations -ADCL calibration required
Diode Detectors ±2-3%	-Small field dosimetry -Array devices -Electron PDD	-Small volume -Rapid readout -No external bias	-Temperature dependence (0.5%/C) -Dose rate dependence -Energy dependence
Film ± 5%	-Planar dose distributions -Electron PDD	-Best spatial resolution (µm) -Large area measurement -Persistent dose record -Tissue equivalent (radiochromic only)	-Delayed readout -Batch-to-batch variation -Chemical development (radiographic only)
Luminescent Dosimeters ±3%	-In Vivo Dosimetry -Personnel dosimeters -End-to-end testing (IROC)	-Small size -Low MV energy dependence	-Delayed readout -Signal loss over time -Supralinear response with accumulated dose
$\begin{array}{l} \textbf{MOSFET Detectors} \\ \pm \ 5\text{-}12\% \end{array}$	-In vivo dosimetry -Small Field Dosimetry -Surface dose	-Extremely small effective volume -Permanent dose record -Instant readout	-Finite life (~100Gy) -Energy Dependence -Temperature Dependence -Sensitivity changes with accumulated dose

References

- → Erazo F, Lallena AM. Calculation of beam quality correction factors for various thimble ionization chambers using the Monte Carlo code PENELOPE. Phys Med 2013;29:163-70.
- → Devic S, Tomic N, Lewis D. Reference radiochromic film dosimetry: Review of technical aspects. Phys Med 2016;32:541-56.
- → Ruiz-Arrebola S, Fabregat-Borrás R, Rodríguez E, et al. Characterization of microMOSFET detectors for in vivo dosimetry in high-dose-rate brachytherapy with 192Ir. Med Phys 2020;47:2242-2253.