

Ant colony algorithm for driving variance reduction techniques in Monte Carlo simulations of radiation transport

A. M. Lallena

Dpto. de Física Atómica, Molecular y Nuclear Univ. Granada

UNIVERSIDAD DE GRANADA

•Implementation of the ant colony algorithm: LINAC

•Some applications

Conclusions

Iproject

el

elicsirproject

2nd WORKSHOP ELICSIR PROJECT, 9-10.03.2021

oincrease of the computer power has made Monte Carlo simulation a powerful tool in many fields

SUproject

oincrease of the computer power has made Monte Carlo simulation a powerful tool in many fields

Monte Carlo tool stands for any procedure that uses random numbers to solve problems

oincrease of the computer power has made Monte Carlo simulation a powerful tool in many fields

•in particular: radiation transport in matter Monte Carlo tool stands for any procedure that uses random numbers to solve problems

oincrease of the computer power has made Monte Carlo simulation a powerful tool in many fields

•in particular: <u>radiation transport in matter</u> surface spectroscopy - electron microscopy microanalysis with electronic probes radiation detector design - dosimetry radiotherapy - ...

Monte Carlo tool stands for any procedure that uses random numbers to solve problems

elicsifproject

oincrease of the computer power has made Monte Carlo simulation a powerful tool in many fields

•in particular: <u>radiation transport in matter</u> surface spectroscopy - electron microscopy microanalysis with electronic probes radiation detector design - dosimetry radiotherapy - ...

ohigh-energy particles traveling through matter: suffer interactions, transfer energy and produce new particles

CSI [project

oincrease of the computer power has made Monte Carlo simulation a powerful tool in many fields

•in particular: <u>radiation transport in matter</u> surface spectroscopy - electron microscopy -	Monte Carlo tool stands for any procedure that uses random numbers to
microanalysis with electronic probes - radiation detector design - dosimetry - radiotherapy	particle showers are formed
ohigh-energy particles traveling throu	gh matter: suffer

Iproject

oincrease of the computer power has made Monte Carlo simulation a powerful tool in many fields

•in particular: <u>radiation transport in matter</u> surface spectroscopy – electron microscopy –	Monte Carlo tool stands for any procedure that uses random numbers to solve problems
microanalysis with electronic probes – radiation detector design – dosimetry – radiotherapy –	particle showers are formed
alial provide a provide a providium plumou	ale markhane auffan

interactions, transfer energy and produce new particles

•Monte Carlo simulation: produces exact results

oincrease of the computer power has made Monte Carlo simulation a powerful tool in many fields

•in particular: <u>radiation transport in matter</u> surface spectroscopy – electron microscopy –	Monte Carlo tool stands for and procedure that use! random numbers to solve problems		
microanalysis with electronic probes – radiation detector design – dosimetry – radiotherapy –	particle showers are formed		
high-energy particles traveling throu interactions, transfer energy and prod	gh matter: suffer uce new particles		

Monte Carlo simulation: produces exact results

but: statistical uncertainties!!

oincrease of the computer power has made Monte Carlo simulation a powerful tool in many fields

•in particular: <u>radiation transport in matter</u> surface spectroscopy - electron microscopy - microanalysis with electronic probes -	Monte Carlo tool stands for any procedure that uses random numbers to solve problems						
radiation detector design – dosimetry – radiotherapy –	particle showers are formed						
ohigh-energy particles traveling throug interactions, transfer energy and produ	gh matter: suffer ice new particles						
Monte Carlo simulation: produces exact results							
obetter precision and accuracy required increasing the number of simula	ires statistical ted uncertainties!!						
histories							

CIIGOJIProject

oincrease of the computer power has made Monte Carlo simulation a powerful tool in many fields

•in particular radiation tro surface spectros microanalysis	": <u>ansport in matter</u> scopy - electron microscopy with electronic probes	Mont stan proce rando solve	e Carlo tool ds for any dure that uses om numbers to problems
radiation dete radiotherapy	.ctor design - dosimetry	- partic	cle showers are ed
ohigh-energy interactions,	particles traveling three transfer energy and pro	ough n oduce v	natter: suffer new particles
Monte Carlo	simulation: produces ex	act res	ults
obetter preci increasing	sion and accuracy re the number of sime	equires slated	but: statistical uncertainties!!
histories	large calculation CPU	times!	
elicsir	2 nd WORKSHOP ELICSIR PROJECT. 9-10.03.202	21	UNIVERSIDAD

2¹¹⁰ WORKSHOP ELICSIK PROJECI, 9-10.03.2021

DEGRANADA

elicsirproject

variance reduction techniques

2nd WORKSHOP ELICSIR PROJECT, 9-10.03.2021

variance reduction techniques

procedures permitting the reduction of the statistical uncertainties without increasing the calculation time

variance reduction techniques

procedures permitting the reduction of the statistical uncertainties without increasing the calculation time

-avoid useless calculations -take advantage of the problem symmetries

variance reduction techniques

procedures permitting the reduction of the statistical uncertainties without increasing the calculation time

-avoid useless calculations -take advantage of the problem symmetries

	•Russian roulette		• splitting		ointe	raction	forcing	
6	directional bremssl	· m	ahlung spli	ŀ	tina	erahae	rejection	1

variance reduction techniques

procedures permitting the reduction of the statistical uncertainties without increasing the calculation time

-avoid useless calculations -take advantage of the problem symmetries

	•Russian r	oulette	• splitting	ointe	raction	forcing	
2 0	directional	hnoneohn	alduna cal	: hhime	erologo	mainchiou	

•statistical weight: unbiased simulations!!

CS**I** [project

variance reduction techniques

procedures permitting the reduction of the statistical uncertainties without increasing the calculation time

-avoid useless calculations -take advantage of the problem symmetries

•Russian roulette •splitting •interaction forcing

odirectional bremsstrahlung splitting orange rejection

•statistical weight: unbiased simulations!!

•VRT used properly may increase the efficiency of the simulation!!

variance reduction techniques

procedures permitting the reduction of the statistical uncertainties without increasing the calculation time

-avoid useless calculations -take advantage of the problem symmetries

•Russian roulette •splitting •interaction forcing

odirectional bremsstrahlung splitting orange rejection

•statistical weight: unbiased simulations!!

•VRT used properly may increase the efficiency of the simulation!!

how to do it?

LINAC geometry (Siemens Mevatron KDS)

head =

2nd WORKSHOP ELICSIR PROJECT, 9-10.03.2021

2nd WORKSHOP ELICSIR PROJECT, 9-10.03.2021

UNIVERSIDAD

2nd WORKSHOP ELICSIR PROJECT, 9-10.03.2021

project

Iproject

CSI[project

UNIVERSIDAD

2nd WORKSHOP ELICSIR PROJ

Implementation of the ant colony algorithm: LINAC ant colony algorithm

2nd WORKSHOP ELICSIR PROJECT, 9-10.03.2021

elicsifproject

Implementation of the ant colony algorithm: LINAC ant colony algorithm

-ants look for food following random walks -if food is found, ants come back to the nest depositing pheromone -ants tend to follow paths with a certain level of pheromone -the level of pheromone increases in the optimal paths between nest and food

elicsifproject

(electrons)

Implementation of the ant colony algorithm: LINAC ant colony algorithm

-importance in a cell tells about the probability that a particle passing through it reaches the ROI -once a particle enters a new cell, VRTs are applied according the particle weight (w) and the cell importance (I)

Implementation of the ant colony algorithm: LINAC ant colony algorithm

-importance in a cell tells about the probability that a particle passing through it reaches the ROI -once a particle enters a new cell, VRTs are applied according the particle weight (w) and the cell importance (I)

oif w·I>1: splitting in w·I particles with w'=1/I

Implementation of the ant colony algorithm: LINAC ant colony algorithm

-importance in a cell tells about the probability that a particle passing through it reaches the ROI -once a particle enters a new cell, VRTs are applied according the particle weight (w) and the cell importance (I)

oif w·I>1: splitting in w·I particles with w'=1/I

if w·I<1: apply Rr with survival probability w·I;
 if particles survives: w'=1/I

oif w·I=1: do nothing

Implementation of the ant colony
algorithm: LINAC ant colony algorithm
-importance in a cell tells about the probability that a particle
passing through it reaches the ROI
-once a particle enters a new cell, VRTs are applied according the
particle weight (w) and the cell importance (I)
eif w·I>1: splitting in w·I particles with w'=1/I
eif w·I<1: apply Rr with survival probability w·I;
if particles survives: w'=1/I
eif w·I=1: do nothing
$$\sum_{j=0}^{100} CPU time:$$

 $2^{\circ} h -> 4.4 h - 6 - 7$
effcsffroject 2° WORKSHOP ELICSIR PROJECT, 9-10.03.2021

2nd WORKSHOP ELICSIR PROJECT, 9-10.03.2021

Implementation of the ant colony
algorithm: LINAC
-importance in a cell tells about the probability that a particle
passing through it reaches the ROI
-once a particle enters a new cell, VRTs are applied according the
particle weight (w) and the cell importance (I)
•if w·I>1: splitting in w·I particles with w'=1/I
•if w·I<1: apply Rr with survival probability w·I;
if particles survives: w'=1/I
•if w·I=1: do nothing

$$I = 2^{k}$$

$$k = \begin{cases} [\frac{5P(i)}{1/(0)} - 5], \text{ if } P(i) < P(0), \\ [\frac{7P(i) - P(0)}{1 - P(0)}], \text{ if } P(i) > P(0). \\ P(i) = \frac{N(i)}{N_{0}(i)} \end{cases}$$

$$P(i) = \frac{N(i)}{N_{0}(i)}$$

CICS $N_0(i)$: number of particles entering *i*-cell and reaching ROI **OJECT, 9-10.03.2021**

importance maps

importance maps

N=102

z ... s

A 11 A

Sec. 1

- 1.1

1. N. M. M. M.

importance maps

N=5.105

N=103 N=102

importance maps

Implementation of the ant colony algorithm: LINAC

Implementation of the ant colony algorithm: LINAC

•algorithm allowing an efficient application of VRT: handled automatically!!!

obased on the scoring of the importance map

Implementation of the ant colony algorithm: LINAC

•algorithm allowing an efficient application of VRT: handled automatically!!!

obased on the scoring of the importance map

ois it general enough?

elicsifproject

owhich are the main characteristics to be care of?

Some applications MOSFET used as dosimeters

2nd WORKSHOP ELICSIR PROJECT, 9-10.03.2021

Some applications MOSFET used as dosimeters nickel encapsulation PMOS A FOG (a) air transistor sensor plastic source support build-up cap isocenter connections. 10.5 cm2.35 mm3N163 air water0.26 E air Ni 2.13 mm ·30.0 cm -MOSFET response: energy deposited um 22.1 in the SiO2 die 101.5 0.35 air (c) -detailed simulation within MOSFET 0.1 mm -very low statistic: 30 days for an Si 2.65 mm 1.50 mm PCB water phantom uncertainty of 10% (k=3) téflon (b) Ni Au $(10 \mu m)$ (d) air teflon Al 800 nm SiO₂ 200 nm CSIR PROJECT, 9-10.03.2021 UNIVERSIDAD Sı DEGRANADA

CSIR PROJECT, 9-10.03.2021

Sı

UNIVERSIDAD

DEGRANADA

Some applications MOSFET used as dosimeters nickel encapsulation PMOS A F06 (a) air transistor adequate ROI sensor plastic support build-up cap isocenter connections-10.5 cm2.35 mm 3N163 air 0.26 ··· water phantom air 2.13 mm ·30.0 cm -MOSFET response: energy deposited 0.20 mm 72 in the SiO2 die air (c) -detailed simulation within MOSFET 0.35 mm 0.1 mm Si -very low statistic: 30 days for an 2.65 mm 1.50 mmPCB water phantom uncertainty of 10% (k=3) téflon (b) Ni $(10 \mu m)$ ono VRT for photons (d) air teflon •ROI is crucial: A1 -SiO2 as ROI does not work! SiO₂ 200 nm CSIR PROJECT, 9-10.03.2021

Sı

UNIVERSIDAD

some applications MOSFET used as dosimeters nickel encapsulation PMOS 1 F06 (a) air transistor adequate ROI sensor plastic support build-up cap isocenter connections-10.5 cm2.35 mm 3N163 air 1 E 10:26 water phantom air 2.13 mm ·30.0 cm -MOSFET response: energy deposited .0.20 mm 72. in the SiO2 die 101.7 0.35 air (c) -detailed simulation within MOSFET 0.1 mm Si -very low statistic: 30 days for an 2.65 mm 1.50 mm PCB water phantom uncertainty of 10% (k=3) téflon (b) Ni $(10 \mu m)$ ono VRT for photons (d) air teflon •ROI is crucial: A1 -SiO2 as ROI does not work! ofactor 20 reduction in CPU SiO₂ 200 nm CSIR PROJECT, 9-10.03.2021 UNIVERSIDAD S_1

Figure 5. Energy deposited in the SiO₂ versus that deposited in the Si bulk. The corresponding values obtained in all our simulations are included. The straight line gives the linear regression of the data with a slope of 2.06×10^{-3} . Uncertainties in the data correspond to 1σ .

Figure 4. Effect of the additional brass encapsulation of the MOSFET. The experimental results (black dots) and the results of the corresponding simulations (darker gray bands) are compared to the results in the absence of the brass encapsulation shown in figure 3. In the case of the 6 (18) MV beam, the thickness of the brass casing is 0.3 (0.5) mm. Uncertainties correspond to 3σ .

Some applications

elicsifproject

Photon beams for radio surgery

some applications

Photon beams for radio surgery

-very narrow beams used for treatment of small lesions nearby healthy tissues that have to be preserved -huge simulation CPU times!!

2nd WORKSHOP ELICSIR PROJECT, 9-10.03.2021

Sproject

Sproject

directional Bremsstrahlung splitting is needed
 applied throughout the whole geometry

CSF[project

Some applications

elicsifproject

Photon beams for radio surgery

some applications

elicsifproject

Photon beams for radio surgery

2nd WORKSHOP ELICSIR PROJECT, 9-10.03.2021

some applications

Photon beams for radio surgery

CPU times: 9 h (10 mm) to 0.9 h (30 mm)

some applications

Photon beams for radio surgery

Some applications

elicsirproject

elicsifproject

Some applications Specific absorbed fractions

Some applications

Specific absorbed fractions

-inform about organ/tissue irradiation due to diagnostic or therapy of other organ -interest in Nuclear Medicine

-inform about organ/tissue irradiation due to diagnostic or therapy of other organ -interest in Nuclear Medicine

-problem: very low statistics because of organ volume and/or distance to source

-inform about organ/tissue irradiation due to diagnostic or therapy of other organ -interest in Nuclear Medicine

-problem: very low statistics because of organ volume and/or distance to source

-efficiency increase by a factor 10!!

-inform about organ/tissue irradiation due to diagnostic or therapy of other organ -interest in Nuclear Medicine

-problem: very low statistics because of organ volume and/or distance to source

-efficiency increase by a factor 10!!

Correction factors of micro-chambers

-inform about organ/tissue irradiation due to diagnostic or therapy of other organ -interest in Nuclear Medicine

-problem: very low statistics because of organ volume and/or distance to source

-efficiency increase by a factor 10!!

project

Correction factors of micro-chambers

-inform about organ/tissue irradiation due to diagnostic or therapy of other organ -interest in Nuclear Medicine

-problem: very low statistics because of organ volume and/or distance to source

-efficiency increase by a factor 10!!

project

Correction factors of micro-chambers

-efficiency increases by a factor 100!!

elicsifproject

•An optimization algorithm based on 'ant colony behavior' has been developed

- •It allows the efficient implementation of variance reduction techniques
- •It uses the information scored on importance maps
- •Minimum intervention by the user is required ... but details are relevant

- S. García Pareja Hosp. Univ. Málaga (Spain)
- M. Anguiano Univ. Granada (Spain)
- G. Díaz Londoño Inst. Tech. Metropolitan Medellín (Colombia)
- F. Salvat Univ. Barcelona (Spain)
- L. Brualla Universitatsklinikum Essen (Germany)
- A. Palma, M.Á. Carvajal Univ. Granada (Spain)
- D. Guirado Hosp. Univ. Granada (Spain)
- F. Erazo SOLCA Cuenca (Ecuador)
- M. Vilches IMOMA Oviedo (Spain)
- P. Galán Hosp. Univ. Málaga (Spain)

Ant colony algorithm for driving variance reduction techniques in Monte Carlo simulations of radiation transport A. M. Lallena

Thanks for your attention