

HARDWARE TECHNIQUES FOR ACCURATE READ-OUT OF SOLID-STATE DOSIMETERS

Alberto J. Palma – University of Granada

2nd WORKSHOP ELICSIR PROJECT, 9-10.03.2021

UNIVERSIDAD DE GRANADA

Agenda

- Introduction
- Silicon PIN diodes
 - General remarks
 - UGR reader design
- MOSFETs/RADFETs
 - Sensor response and configurations
 - UGR real-time reader
 - CubeSAT URSA MAIOR project

Introduction

- Talk scope: Radiotherapy control
 - Dosimeters: Si PIN diodes and MOSFETs/RADFETs
 - Commercial low-cost devices
 - Current and voltage mode sensor output
 - Analog and mixed conditioning electronics
 - Main influential factors: sensors specs. (sensitivity, biasing, output ranges, impedance, noise, ...)
 - Design considerations:
 - Portable/Handheld reader (powering, size, weight)
 - Acceptable performance (accuracy, resolution, dynamic response, and ranges)

RADFETs by Varidis

Si PIN diodes: Response to radiation

- Structure: diode with an *ad hoc* intrinsic region to extend sensitive volume
- Response:
 - Creation of radiation-induced e-h pairs
 - Separated by depletion-layer electric field
 - Immediate photocurrent in its terminals.
- Photovoltaic mode (Commercial detectors)
 - Diode is not biased
 - Operates as a source (solar cell)
- Photoconductive mode
 - Diode is in reverse bias
 - Operates similarly to a photoconductor (LDR)

Si PIN diodes: Element of circuit

Equivalent circuit:

- I_o = dark + photocurrent
- I_d = direct current (negligible)
- C_p = junction capacitance (1- 10³ pF)
- R_{sh} = shunt resistance (0.1 10 G Ω)
- Noise: Shunt noise dominates

$$i_{nt} = \sqrt{i_{nj}^2 + i_{ns}^2} = \sqrt{\frac{4kTB}{R_{sh}}} + 2qI_oB$$

Temperature: greatly affects dark current

Si PIN diodes: I-V converters

Design for low noise and balanced bandwidth:

- Operational amplifier (FET): High input resistance >> R_{sh}.
- R_r also in V⁺ for bias current compensation
- C_r: circuit stability and low-pass filtering (not too much)
- Photocurrents 0.1- 50 nA => $R_r \approx 0.1-1 \text{ G}\Omega (V_0 \approx 1 \text{ V})$
 - GΩ resistors: noisy, high tolerance, high thermal drift, short bandwidth

Si PIN diodes: I-V converters

Offset Voltage amplification

project

Solution 2: Two stages

Better BW-noise trade-off

Si PIN diodes: UGR reader

- Solution 2: Two stages
 - I-V converter: VF1 = $4.7 \cdot 10^6 \cdot I_{ph}$ + Voltage amplifier Av ≈ 20

Si PIN diodes: UGR reader

- AC behaviour and signal-to-noise ratio
 - BW= 100 Hz

roject

- SNR > 80 dB (up to 1 kHz) (> 13 bit ADC)
- Slew rate: 70 V/s

100.00m

Time (s)

150.00m

200.00m

2nd WORKSHOP ELICSIR PROJECT, 9-10.03.2021

0.00

0.00

50.00m

Si PIN diodes: UGR reader

oject

Some experimental results of BPW34S Si PIN diode:

Measured photocurrent versus dose rate in a LINAC (16 MV beams)

MOSFET/RADFET: Structure

- Enhancement p-channel MOSFETs
 - (a) Lateral (RADFET) Higher sensitivity
 - (b) Vertical DMOS, inexpensive
 - I-V characteristic in saturation region:

$$\begin{split} i_D &= -\frac{\beta}{2} (|v_{GS}| - |V_t|)^2 \\ \Leftrightarrow |v_{GS}| \geq |V_t|, |v_{DS}| \geq |v_{GS} - V_t| \end{split}$$

Typical biasing region when used as radiation detector

MOSFET/RADFET: Response to radiation

- Positive charge trapped near the interface
- Interface traps in the interface

MOSFET/RADFET: Configurations as dosimeter

- Unbiased/Biased gate-source voltage
- Single or stacked devices

Measure V_s with constant current method Saturation region $V_{GD}=0$

$$i_{D} = -\frac{\beta}{2} (|v_{GS}| - |V_{t}|)^{2}$$

Considering $\beta \approx cte \Rightarrow \Delta |v_{GS}| \approx \Delta |V_t|$ Gate to ground $V_G = 0$ $\Delta |V_S| \approx \Delta |V_t|$

In all cases, source-drain voltage read-out under constants I_D

2nd WORKSHOP ELICSIR PROJECT, 9-10.03.2021

- Compact electronic reader able to read in real time:
 - Unbiased/Biased pMOS
 - Up to 2 stacked devices

Two modules:

- Sensor module
- Reader Unit + biasing module

General features:

- Sensor modules for 1 or 2 pMOS
- Programmable current source
- Dual V_s recording with zeroed INA
- 16-bit A/D converter (ADC)
- MCU data averaging (512)

Powering electronics:

- 7.4 V ion-Li battery
- DC-DC boosted to 24 V (analog circuit)
- V_{SDmax} readable 17 V

---- D

Sensor module

G-JFET G-D

Sensor module: 1 pMOS (ESD protection and selective pin biasing)

JFET S-D switch allows pMOS reading

- ON: gate short-circuited during irradiation and storage
- OFF: during read-out

JFET G-D switch allows pMOS biasing

- ON: unbiased pMOS mode
- OFF: biased pMOS mode

JFET: MMBF4391				
Normally ON				
R(ON) = 30 Ω				
$V_{cutoff} = -10 V$				

 $\rm R_{G}$ for discharging of JFET gate capacitance

Sensor module: 2 stacked pMOS configuration

Sensor modules: 3N163, a DMOS, CD4007 and Tyndall RADFET

elicsirproject

Reader unit: programmable drain current source

Reader unit: Source voltage measurement

- Directly from MOSFET (buffer + ADC)
- Amplified (INA + ADC)
- V⁻ (INA) set to 80 mV by DAC
- Resolution (16-bit ADC and INA Gain ≈ 4)
 - $\Delta V_{SD} = 20 \ \mu V/LSB$

Biasing module:

- Digital potentiometer for providing up to 22 V
- Analog buffer for impedance matching
- Switch controlled by MCU for biasing control

Some examples of real-time measurements: 3N163

2nd WORKSHOP ELICSIR PROJECT, 9-10.03.2021

roject

Some examples of real-time measurements: a DMOS

2nd WORKSHOP ELICSIR PROJECT, 9-10.03.2021

roiect

- QB50: European network of 50 CubeSats for multi-point, in-situ measurements in the lower thermosphere (FP7-EU)
- URSA MAIOR (University Sapienza- Rome)
- Challenge: To include a small printed circuit board with radiation sensors for dosimetry inside the Satellite with high T stress (0-40°C)

Main board:

- DC supply
- Microprocessor with built-in ADC

• 4 sensors selected biased a I_{zTC}: to cover different sensitivities

- JFET protected:
 - Radiation cycles: all terminals short-circuit (99%)
 - Reading period: JFET cut-off (1%)

If R2=10·R1 =>LTC ≈ 0 => I_{SFT}=0.134V/R1

TYPE OF SENSOR	SELECTED Id(µA)	
CD4007	137	
3N163	230	
Tyndall RADFET (x2)	10	

Current source based on thermal compensated LM334:

LM334

Output current: 1 μ A - 10 mA Biased from 1 V to 40 V

Thermal and irradiation tests before launching:

- Irradiation set-up
 - LINAC Mevatron (Siemens, Germany)
 - Normal Beam 15 MV up to 115 Gy
- Temperature stress
 - Climate chamber between 0 and 40°C

Results

MOSFET	Sensitivity (mV/Gy)	SD Sensitivity (mV/Gy)	Thermal drift (mV/K)
CD4007	5.0	0.1	0.13
3N163	17.90	0.07	0.36
RADFET 1	20.6	0.1	0.3
RADFET 2	20.8	0.1	0.4

Sensor responses for 115 Gy of accumulated dose

Communication lost after launching: no data received

CONCLUSIONS AND FUTURE WORK

- Reliable and high performance dosimetry systems for realtime monitoring were designed, fabricated and tested for PIN diodes and pMOS.
- However, as any electronic system need to be constantly revised and redesigned to include new features or to improve existing ones.
- We are working in adapting it to different kind of solid-state dosimeter beyond pMOS.
- It would be advisable to take it to the market
- Any collaboration in this regard will be very welcome.

Alberto J. Palma – University of Granada 2nd WORKSHOP ELICSIR PROJECT, 9-10.03.2021

THANK YOU FOR YOUR ATTENTION- QUESTIONS?