

PS-BBICS: Pulse Stretching Bulk Built-in Current Sensor for On-Chip Measurement of Single Event Transients

Marko Andjelkovic, <u>Milos Marjanovic</u>, Junchao Chen, Stefan Ilic, Goran Ristic, Milos Krstic

33rd European Symposium on Reliability of Electron Devices Failure Physics and Analysis (ESREF 2022)

September 26 – 29, Berlin, Germany

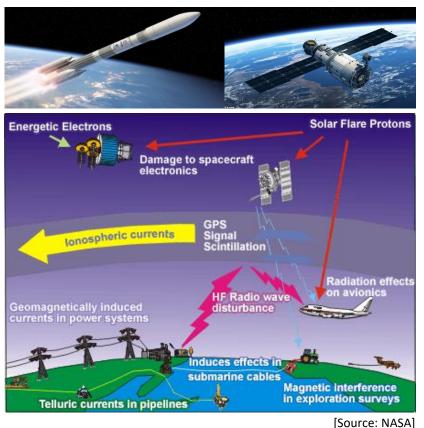
innovations for high performance microelectronics

1 Background

- 2 Bulk Built-in Current Sensor (BBICS)
- 3 Proposed Pulse Stretching BBICS (PS-BBICS)
- 4 SET Response of PS-BBICS
- **5** Comparison with Alternative Particle Detectors

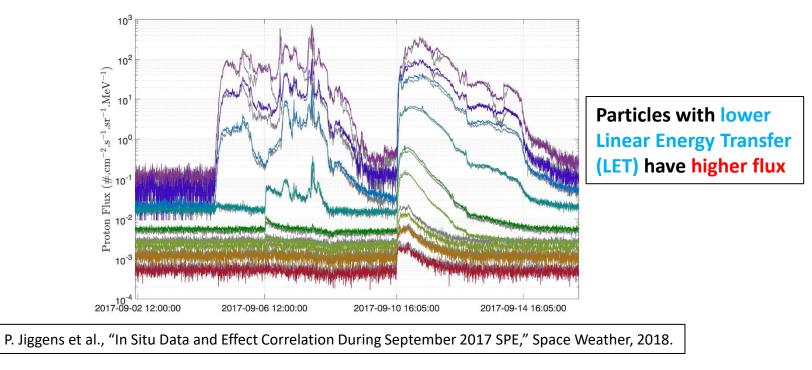
6 Summary

1. Background

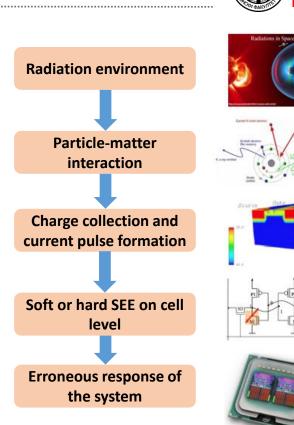


Ionizing radiation in space

- Different types and variable intensity
- May cause damage and failure in electronics


Radiation sources

- Radiation trapped in Earth's magnetic field (Van Allen belts)
- Galactic Cosmic Rays (GCRs)
 - From deep space
- Solar Particle Events (SPEs)
 - Solar flares and coronal mass ejections from the Sun


Due to Solar Particle Events, the particle flux in space may increase by
2 – 6 orders of magnitude during a period of several hours or days

1. Background

Single Event Effects (SEEs)

- Major reliability threat for Integrated Circuits (ICs) used in space applications
- Caused by a single energetic particle (e.g. proton, neutron, heavy ion)
- Soft SEEs: temporary impact (data loss)
- Hard SEEs: permanent physical damage
- Soft SEEs are critical for nanoscale ICs:
 - Single Event Transients (SETs) voltage glitches in combinational logic
 - Single Event Upsets (SEUs) bit flips in memory and sequential logic

1. Background

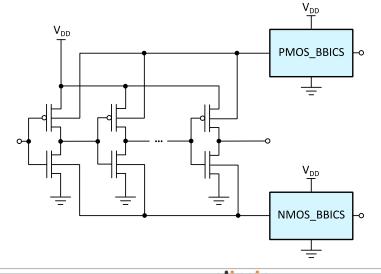
Soft Error Rate (SER)

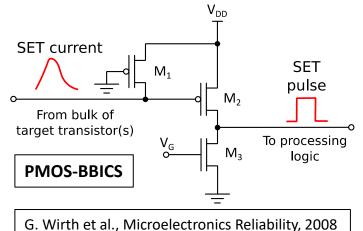
- Number of soft errors (due to SETs and SEUs) in a given time interval
- Depends on particle flux and Linear Energy Transfer (LET)

Self-adaptive fault-tolerance for dynamic control of SER

- > Activation of fault-tolerant mechanisms only under critical radiation levels
- Trade-off between performance, power consumption and radiation hardness
- Particle detectors are needed to monitor radiation intensity

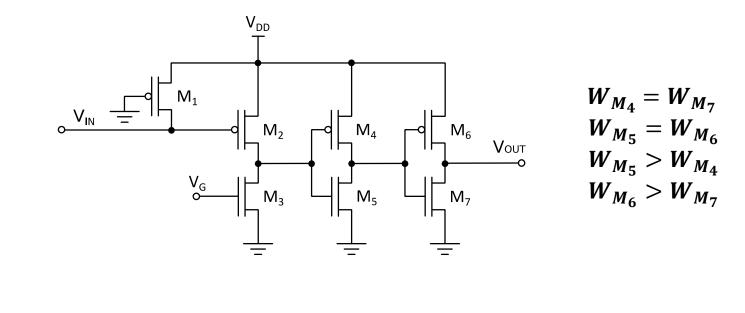
Semiconductor particle detectors


- Diode-based detectors
- SRAM-based detectors
- Bulk built-in current detectors
- Acoustic wave detectors
- 3D NAND flash detectors
- Pulse stretching detectors


There is no a detector that can detect strike location and measure particle flux and LET with fully digital readout

2. Bulk Built-in Current Sensor (BBICS)

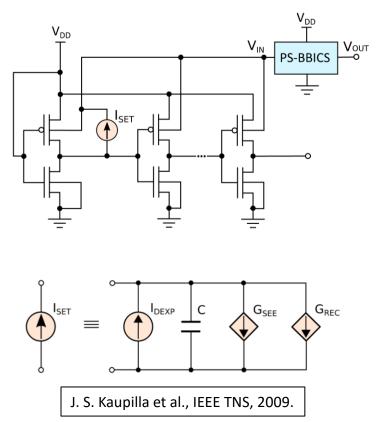
- Connected to transistors' bulk terminals
- Detection of particle-induced current pulse
- Current pulse is transformed into transient voltage pulse (alarm signal)
- Two BBICSs are needed (for PMOS and NMOS)



- Detects location of particle strike
- Fully digital readout
- Sensitivity decreases with the number of transistors
- Cannot measure SET pulse width (particle LET)

3. Proposed Pulse Stretching BBICS (PS-BBICS)

- Modification of standard BBICS by adding a two-inverter custom-sized pulse stretcher
- > Pulse stretcher extends short SETs to facilitate their propagation through the processing logic

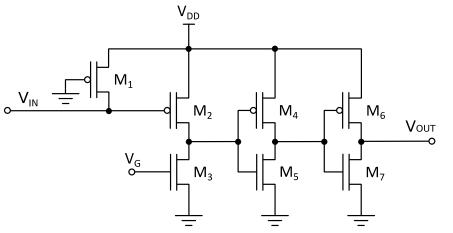

4. SET Response of PS-BBICS

Simulation setup

- Use of PS-BBICS to detect SETs in inverter chain
- SET is simulated in SPICE, using a bias-dependent current source
 - Double-exponential current source and two voltagedependent current sources

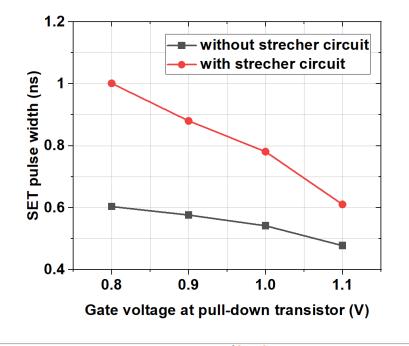
$$I_{DEXP}(t) = \frac{Q}{\tau_{fall} - \tau_{rise}} \left(e^{\frac{1}{\tau_{fall}}} - e^{\frac{-t}{\tau_{rise}}} \right)$$
$$Q = 1.035 \times 10^{-2} \times l \times LET$$

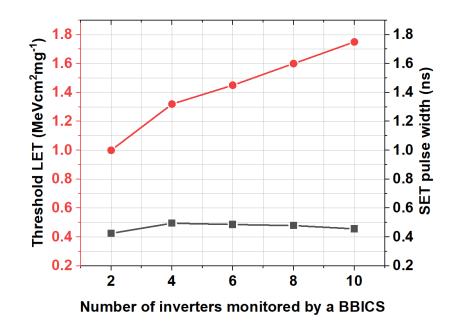
Analysis of SET pulse width dependence on the number of monitored inverters, supply voltage, temperature and process corners



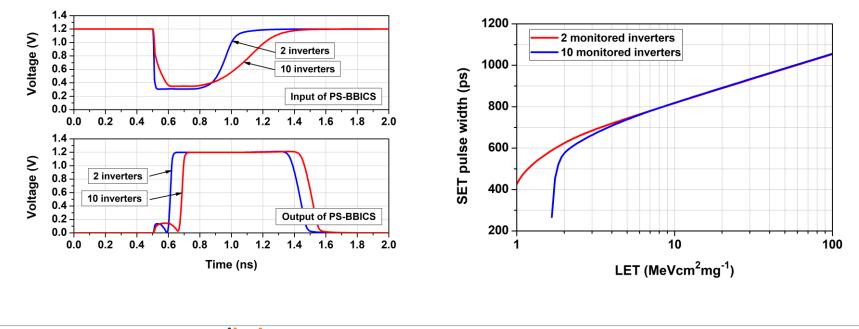
Transistor sizing

- > Primary requirement for a particle detector is to have as low threshold LET as possible
- LET_{TH} = 1 MeVcm²mg⁻¹ is chosen as optimal value, as most particles in space have greater LET


LET _{TH}	W/L (μm/μm)				
(MeVcm ² mg ⁻¹)	M1, M2	M3, M4, M7	M5, M6		
0.7	0.6/0.13		0.35/0.13		
0.8	0.9/0.13		1.5/0.13		
0.9	1/0.13	0.15/0.13	2.75/0.13		
1.0	1.2/0.13		4/0.13		
2.0	3.25/0.13		12.5/0.13		



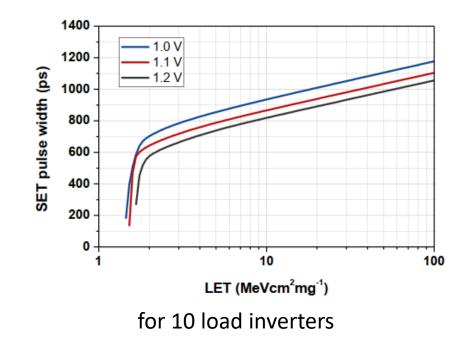
SET pulse width as a function of gate voltage at pull-down transistor M3, for LET = 60 MeVcm²mg⁻¹

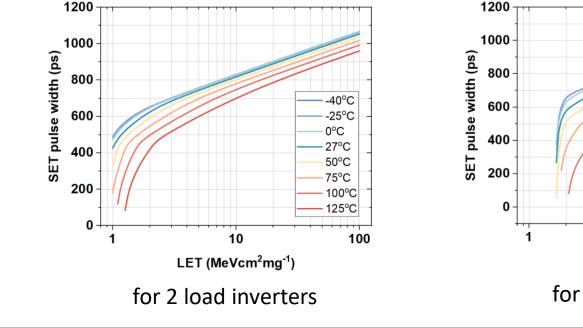


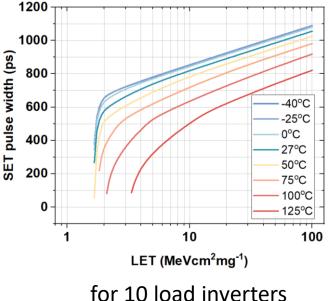
Threshold LET and corresponding SET pulse width as a function of number of monitored inverters

SET pulse width as a function of LET, for 2 and 10 load inverters

For LET > 4 MeVcm²mg⁻¹, the SET pulse width is independent of the number of monitored inverters

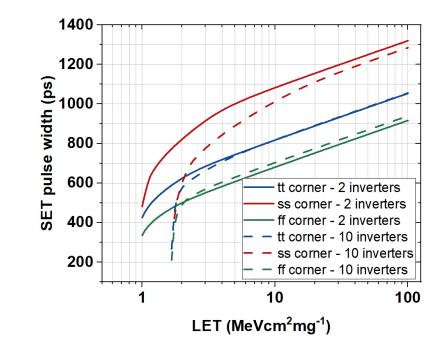



SET pulse width as a function of LET and supply voltage


> SET pulse width increases when supply voltage decreases

4. SET Response of PS-BBICS

SET pulse width increases when temperature decreases



SET pulse width as a function of LET, for three process corners (2 and 10 monitored inverters)

5. Comparison with Alternative Particle Detectors

.

Type of detector	Readout method	Hardware overhead	Strike location detection	LET Detection	Tested under radiation
PS-BBICS	Digital	Low	Yes	Yes	No
BBICS	Digital	Low	Yes	No	Yes
Acoustic wave detector	Mixed-mode	Medium/high	Yes	No	No
Diode detector	Mixed-mode	Medium/high	No	Yes	Yes
SRAM detector	Digital	Medium/high	No	No	Yes
3D NAND flash	Mixed-mode	Medium/high	No	Yes	Yes
Pulse streching inverter chains	Digital	Low	No	Yes	No

- PS-BBICS: modified BBICS supporting SET pulse width measurement
- Minimum LET that can be detected is 1 MeVcm²mg⁻¹
- LET_{TH} increases with increasing number of monitored gates
- For higher LET values, SET pulse width is independent of the number of monitored gates
- Supply voltage, temperature and process variations influence the SET pulse width
- Future work:
 - To increase the sensitivity of PS-BBICS
 - On-chip implementation of sensor
 - Heavy ion testing

Thank you for your attention!

Milos Marjanovic

Faculty of Electronic Engineering, University of Nis Aleksandra Medvedeva 14 18000 Nis Serbia www.elfak.ni.ac.rs milos.marjanovic@elfak.ni.ac.rs stefan.ilic@elfak.ni.ac.rs goran.ristic@elfak.ni.ac.rs IHP – Leibniz-Institut für innovative Mikroelektronik Im Technologiepark 25 15236 Frankfurt (Oder) Germany www.ihp-microelectronics.com andjelkovic@ihp-microelectronics.com chen@ihp-microelectronics.com krstic@ihp-microelectronics.com

elicsir

innovations for high performance

microelectronics

